Tay FC et al. (OCT 2013)
Journal of Gene Medicine 15 10 384--395
Targeted transgene insertion into the AAVS1 locus driven by baculoviral vector-mediated zinc finger nuclease expression in human-induced pluripotent stem cells
Background The AAVS1 locus is viewed as a ‘safe harbor' for transgene insertion into human genome. In the present study,we report a new method for AAVS1 targeting in human-induced pluripotent stem cells (hiPSCs). Methods We have developed two baculoviral transduction systems: one to deliver zinc finger nuclease (ZFN) and a DNA donor template for site-specific gene insertion and another to mediate Cre recombinase-mediated cassette exchange system to replace the inserted transgene with a new transgene. Results Our ZFN system provided the targeted integration efficiency of a Neo-EGFP cassette of 93.8% in G418-selected,stable hiPSC colonies. Southern blotting analysis of 20 AASV1 targeted colonies revealed no random integration events. Among 24 colonies examined for mono- or biallelic AASV1 targeting,25% of them were biallelically modified. The selected hiPSCs displayed persistent enhanced green fluorescent protein expression and continued the expression of stem cell pluripotency markers. The hiPSCs maintained the ability to differentiate into three germ lineages in derived embryoid bodies and transgene expression was retained in the differentiated cells. After pre-including the loxP-docking sites into the Neo-EGFP cassette,we demonstrated that a baculovirus-Cre/loxP system could be used to facilitate the replacement of the Neo-EGFP cassette with another transgene cassette at the AAVS1 locus. Conclusions Given high targeting efficiency,stability in expression of inserted transgene and flexibility in transgene exchange,the approach reported in the present study holds potential for generating genetically-modified human pluripotent stem cells suitable for developmental biology research,drug development,regenerative medicine and gene therapy. Copyright textcopyright 2013 John Wiley & Sons,Ltd.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
07923
85850
85857
85870
85875
产品名:
Dispase (1 U/mL)
mTeSR™1
mTeSR™1
(Sep 2024)
Nature Communications 15
Sequence variants influencing the regulation of serum IgG subclass levels
Immunoglobulin G (IgG) is the main isotype of antibody in human blood. IgG consists of four subclasses (IgG1 to IgG4),encoded by separate constant region genes within the Ig heavy chain locus (IGH). Here,we report a genome-wide association study on blood IgG subclass levels. Across 4334 adults and 4571 individuals under 18 years,we discover ten new and identify four known variants at five loci influencing IgG subclass levels. These variants also affect the risk of asthma,autoimmune diseases,and blood traits. Seven variants map to the IGH locus,three to the Fcγ receptor (FCGR) locus,and two to the human leukocyte antigen (HLA) region,affecting the levels of all IgG subclasses. The most significant associations are observed between the G1m (f),G2m(n) and G3m(b*) allotypes,and IgG1,IgG2 and IgG3,respectively. Additionally,we describe selective associations with IgG4 at 16p11.2 (ITGAX) and 17q21.1 (IKZF3,ZPBP2,GSDMB,ORMDL3). Interestingly,the latter coincides with a highly pleiotropic signal where the allele associated with lower IgG4 levels protects against childhood asthma but predisposes to inflammatory bowel disease. Our results provide insight into the regulation of antibody-mediated immunity that can potentially be useful in the development of antibody based therapeutics. Immunoglobulin G (IgG) is the main isotype of antibody in human blood. Here the authors describe 14 genetic variants that affect IgG levels in blood. The data provide new insight into the regulation of humoral immunity that could be useful in the development of antibody-based therapeutics.
View Publication
产品类型:
产品号#:
18000
产品名:
EasySep™磁极
Xia G et al. (APR 2013)
Cellular reprogramming 15 2 166--77
Generation of neural cells from DM1 induced pluripotent stem cells as cellular model for the study of central nervous system neuropathogenesis.
Dystrophia myotonica type 1 (DM1) is an autosomal dominant multisystem disorder. The pathogenesis of central nervous system (CNS) involvement is poorly understood. Disease-specific induced pluripotent stem cell (iPSC) lines would provide an alternative model. In this study,we generated two DM1 lines and a normal iPSC line from dermal fibroblasts by retroviral transduction of Yamanaka's four factors (hOct4,hSox2,hKlf4,and hc-Myc). Both DM1 and control iPSC clones showed typical human embryonic stem cell (hESC) growth patterns with a high nuclear-to-cytoplasm ratio. The iPSC colonies maintained the same growth pattern through subsequent passages. All iPSC lines expressed stem cell markers and differentiated into cells derived from three embryonic germ layers. All iPSC lines underwent normal neural differentiation. Intranuclear RNA foci,a hallmark of DM1,were detected in DM1 iPSCs,neural stem cells (NSCs),and terminally differentiated neurons and astrocytes. In conclusion,we have successfully established disease-specific human DM1 iPSC lines,NSCs,and neuronal lineages with pathognomonic intranuclear RNA foci,which offer an unlimited cell resource for CNS mechanistic studies and a translational platform for therapeutic development.
View Publication
Fong H et al. (MAR 2012)
Stem cell research 8 2 206--14
Transcriptional regulation of TRKC by SOX2 in human embryonic stem cells.
Human embryonic stem (hES) cells have the dual ability to self-renew and differentiate into specialized cell types. However,in order to realize the full potential of these cells it is important to understand how the genes responsible for their unique characteristics are regulated. In this study we examine the regulation of the tropomyosin-related kinase (TRK) genes which encode for receptors important in hES cell survival and self-renewal. Although the TRK genes have been studied in many neuronal cell types,the regulation of these genes in hES cells is unclear. Our study demonstrates a novel regulatory relationship between the TRKC gene and the transcription factor SOX2. Our results found that hES cells highly express full-length and truncated forms of the TRKC gene. However,examination of the related TRKB gene showed a lower overall expression of both full-length and truncated forms. Through RNA interference,we knocked down expression levels of SOX2 in hES cells and examined the expression of TRKC,as well as TRKB. Upon loss of SOX2 we found that TRKC mRNA levels were significantly downregulated but TRKB levels remained unchanged,demonstrating an important regulatory dependence on SOX2 by TRKC. We also found that TRKC protein levels were also decreased after SOX2 knock down. Further analysis found the regulatory region of TRKC to be highly conserved among many mammals with potential SOX binding motifs. We confirmed a specific binding motif as a site that SOX2 utilizes to directly interact with the TRKC regulatory region. In addition,we found that SOX2 drives expression of the TRKC gene by activating a luciferase reporter construct containing the TRKC regulatory region and the SOX binding motif.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
O'Reilly D et al. (FEB 2013)
Genome Research 23 2 281--291
Differentially expressed, variant U1 snRNAs regulate gene expression in human cells
Human U1 small nuclear (sn)RNA,required for splicing of pre-mRNA,is encoded by genes on chromosome 1 (1p36). Imperfect copies of these U1 snRNA genes,also located on chromosome 1 (1q12-21),were thought to be pseudogenes. However,many of these variant" (v)U1 snRNA genes produce fully processed transcripts. Using antisense oligonucleotides to block the activity of a specific vU1 snRNA in HeLa cells�
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Zhang Y et al. (JUN 2013)
Neuron 78 5 785--798
Rapid single-step induction of functional neurons from human pluripotent stem cells
Available methods for differentiating human embryonic stem cells (ESCs) and induced pluripotent cells (iPSCs) into neurons are often cumbersome,slow,and variable. Alternatively,human fibroblasts can be directly converted into induced neuronal (iN) cells. However,with present techniques conversion is inefficient,synapse formation is limited,and only small amounts of neurons can be generated. Here,we show that human ESCs and iPSCs can be converted into functional iN cells with nearly 100% yield and purity in less than 2weeks by forced expression of a single transcription factor. The resulting ES-iN or iPS-iN cells exhibit quantitatively reproducible properties independent of the cell line of origin,form mature pre- and postsynaptic specializations,and integrate into existing synaptic networks when transplanted into mouse brain. As illustrated by selected examples,our approach enables large-scale studies of human neurons for questions such as analyses of human diseases,examination of human-specific genes,and drug screening
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Mü et al. (JAN 2013)
Journal of visualized experiments : JoVE 80
Culturing of human nasal epithelial cells at the air liquid interface.
In vitro models using human primary epithelial cells are essential in understanding key functions of the respiratory epithelium in the context of microbial infections or inhaled agents. Direct comparisons of cells obtained from diseased populations allow us to characterize different phenotypes and dissect the underlying mechanisms mediating changes in epithelial cell function. Culturing epithelial cells from the human tracheobronchial region has been well documented,but is limited by the availability of human lung tissue or invasiveness associated with obtaining the bronchial brushes biopsies. Nasal epithelial cells are obtained through much less invasive superficial nasal scrape biopsies and subjects can be biopsied multiple times with no significant side effects. Additionally,the nose is the entry point to the respiratory system and therefore one of the first sites to be exposed to any kind of air-borne stressor,such as microbial agents,pollutants,or allergens. Briefly,nasal epithelial cells obtained from human volunteers are expanded on coated tissue culture plates,and then transferred onto cell culture inserts. Upon reaching confluency,cells continue to be cultured at the air-liquid interface (ALI),for several weeks,which creates more physiologically relevant conditions. The ALI culture condition uses defined media leading to a differentiated epithelium that exhibits morphological and functional characteristics similar to the human nasal epithelium,with both ciliated and mucus producing cells. Tissue culture inserts with differentiated nasal epithelial cells can be manipulated in a variety of ways depending on the research questions (treatment with pharmacological agents,transduction with lentiviral vectors,exposure to gases,or infection with microbial agents) and analyzed for numerous different endpoints ranging from cellular and molecular pathways,functional changes,morphology,etc. In vitro models of differentiated human nasal epithelial cells will enable investigators to address novel and important research questions by using organotypic experimental models that largely mimic the nasal epithelium in vivo.
View Publication
产品类型:
产品号#:
05001
05021
05022
产品名:
PneumaCult™-ALI 培养基
PneumaCult™-ALI 培养基含12 mm Transwell®插件
PneumaCult™-ALI 培养基含6.5 mm Transwell®插件
McIntyre BAS et al. (JAN 2014)
Stem cells translational medicine 3 1 7--17
Expansive generation of functional airway epithelium from human embryonic stem cells.
Production of human embryonic stem cell (hESC)-derived lung progenitors has broad applicability for drug screening and cell therapy; however,this is complicated by limitations in demarcating phenotypic changes with functional validation of airway cell types. In this paper,we reveal the potential of hESCs to produce multipotent lung progenitors using a combined growth factor and physical culture approach,guided by the use of novel markers LIFRα and NRP1. Lung specification of hESCs was achieved by priming differentiation via matrix-specific support,followed by air-liquid interface to allow generation of lung progenitors capable of in vitro maturation into airway epithelial cell types,resulting in functional characteristics such as secretion of pulmonary surfactant,ciliation,polarization,and acquisition of innate immune activity. This approach provided a robust expansion of lung progenitors,allowing in vivo assessment,which demonstrated that only fully differentiated hESC-derived airway cells were retained in the distal airway,where they aided in physiological recovery in immunocompromised mice receiving airway injury. Our study provides a basis for translational applications of hESCs for lung diseases.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
20110
20120
85850
85857
85870
85875
产品名:
EasySep™ 红细胞裂解缓冲液
EasySep™ 红细胞裂解缓冲液
mTeSR™1
mTeSR™1
Bouchi R et al. (JAN 2014)
Nature communications 5 4242
FOXO1 inhibition yields functional insulin-producing cells in human gut organoid cultures.
Generation of surrogate sources of insulin-producing β-cells remains a goal of diabetes therapy. While most efforts have been directed at differentiating embryonic or induced pluripotent stem (iPS) cells into β-like-cells through endodermal progenitors,we have shown that gut endocrine progenitor cells of mice can be differentiated into glucose-responsive,insulin-producing cells by ablation of transcription factor Foxo1. Here we show that FOXO1 is present in human gut endocrine progenitor and serotonin-producing cells. Using gut organoids derived from human iPS cells,we show that FOXO1 inhibition using a dominant-negative mutant or lentivirus-encoded small hairpin RNA promotes generation of insulin-positive cells that express all markers of mature pancreatic β-cells,release C-peptide in response to secretagogues and survive in vivo following transplantation into mice. The findings raise the possibility of using gut-targeted FOXO1 inhibition or gut organoids as a source of insulin-producing cells to treat human diabetes.
View Publication
产品类型:
产品号#:
05110
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
STEMdiff™定型内胚层检测试剂盒
mTeSR™1
mTeSR™1
Badizadegan K et al. (NOV 2014)
AJP: Gastrointestinal and Liver Physiology 307 10 G1002--G1012
Presence of intramucosal neuroglial cells in normal and aganglionic human colon
The enteric nervous system (ENS) is composed of neural crest-derived neurons (also known as ganglion cells) the cell bodies of which are located in the submucosal and myenteric plexuses of the intestinal wall. Intramucosal ganglion cells are known to exist but are rare and often considered ectopic. Also derived from the neural crest are enteric glial cells that populate the ganglia and the associated nerves,as well as the lamina propria of the intestinal mucosa. In Hirschsprung disease (HSCR),ganglion cells are absent from the distal gut because of a failure of neural crest-derived progenitor cells to complete their rostrocaudal migration during embryogenesis. The fate of intramucosal glial cells in human HSCR is essentially unknown. We demonstrate a network of intramucosal cells that exhibit dendritic morphology typical of neurons and glial cells. These dendritic cells are present throughout the human gut and express Tuj1,S100,glial fibrillary acidic protein,CD56,synaptophysin,and calretinin,consistent with mixed or overlapping neuroglial differentiation. The cells are present in aganglionic colon from patients with HSCR,but with an altered immunophenotype. Coexpression of Tuj1 and HNK1 in this cell population supports a neural crest origin. These findings extend and challenge the current understanding of ENS microanatomy and suggest the existence of an intramucosal population of neural crest-derived cells,present in HSCR,with overlapping immunophenotype of neurons and glia. Intramucosal neuroglial cells have not been previously recognized,and their presence in HSCR poses new questions about ENS development and the pathobiology of HSCR that merit further investigation.
View Publication