Novel co-culture model of T cells and midbrain organoids for investigating neurodegeneration in Parkinson’s disease
Recent studies demonstrate that brain infiltration of peripheral immune cells and their interaction with brain-resident cells contribute to Parkinson’s disease (PD). However,mechanisms of T cell-brain cell communication are not fully elucidated and models allowing investigation of interaction between T cells and brain-resident cells are required. In this study,we developed a three-dimensional (3D) model composed of stem cell-derived human midbrain organoids (hMO) and peripheral blood T cells. We demonstrated that organoids consist of multiple midbrain-specific cell types,allowing to study T cell motility and interactions with midbrain tissue in a spatially organized microenvironment. We optimized co-culture conditions and demonstrated that T cells infiltrate hMO tissue,leading to neural cell loss. Our work establishes a novel 3D cell co-culture model as a promising tool to investigate the effect of the adaptive immune system on the midbrain and can be used in future studies to address these processes in the context of PD.
View Publication
产品类型:
产品号#:
100-0483
100-0484
产品名:
Hausser Scientificᵀᴹ 明线血球计数板
ReLeSR™
Lopez-Izquierdo A et al. (NOV 2014)
American journal of physiology. Heart and circulatory physiology 307 9 H1370--7
A near-infrared fluorescent voltage-sensitive dye allows for moderate-throughput electrophysiological analyses of human induced pluripotent stem cell-derived cardiomyocytes.
Human induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM)-based assays are emerging as a promising tool for the in vitro preclinical screening of QT interval-prolonging side effects of drugs in development. A major impediment to the widespread use of human iPSC-CM assays is the low throughput of the currently available electrophysiological tools. To test the precision and applicability of the near-infrared fluorescent voltage-sensitive dye 1-(4-sulfanatobutyl)-4-β[2-(di-n-butylamino)-6-naphthyl]butadienylquinolinium betaine (di-4-ANBDQBS) for moderate-throughput electrophysiological analyses,we compared simultaneous transmembrane voltage and optical action potential (AP) recordings in human iPSC-CM loaded with di-4-ANBDQBS. Optical AP recordings tracked transmembrane voltage with high precision,generating nearly identical values for AP duration (AP durations at 10%,50%,and 90% repolarization). Human iPSC-CMs tolerated repeated laser exposure,with stable optical AP parameters recorded over a 30-min study period. Optical AP recordings appropriately tracked changes in repolarization induced by pharmacological manipulation. Finally,di-4-ANBDQBS allowed for moderate-throughput analyses,increasing throughput textgreater10-fold over the traditional patch-clamp technique. We conclude that the voltage-sensitive dye di-4-ANBDQBS allows for high-precision optical AP measurements that markedly increase the throughput for electrophysiological characterization of human iPSC-CMs.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Andreani M et al. (JAN 2011)
Haematologica 96 1 128--33
Quantitatively different red cell/nucleated cell chimerism in patients with long-term, persistent hematopoietic mixed chimerism after bone marrow transplantation for thalassemia major or sickle cell disease.
BACKGROUND: Persistent mixed chimerism represents a state in which recipient and donor cells stably co-exist after hematopoietic stem cell transplantation. However,since in most of the studies reported in literature the engraftment state was observed in the nucleated cells,in this study we determined the donor origin of the mature erythrocytes of patients with persistent mixed chimerism after transplantation for hemoglobinopathies. Results were compared with the engraftment state observed in singly picked out burst-forming unit - erythroid colonies and in the nucleated cells collected from the peripheral blood and from the bone marrow. DESIGN AND METHODS: The donor origin of the erythrocytes was determined analyzing differences on the surface antigens of the erythrocyte suspension after incubation with anti-ABO and/or anti-C,-c,-D,-E and -e monoclonal antibodies by a flow cytometer. Analysis of short tandem repeats was used to determine the donor origin of nucleated cells and burst-forming unit - erythroid colonies singly picked out after 14 days of incubation. RESULTS: The proportions of donor-derived nucleated cells in four transplanted patients affected by hemoglobinopathies were 71%,46%,15% and 25% at day 1364,1385,1314 and 932,respectively. Similar results were obtained for the erythroid precursors,analyzing the donor/recipient origin of the burst-forming unit - erythroid colonies. In contrast,on the same days of observation,the proportions of donor-derived erythrocytes in the four patients with persistent mixed chimerism were 100%,100%,73% and 90%. Conclusions Our results showed that most of the erythrocytes present in four long-term transplanted patients affected by hemoglobinopathies and characterized by the presence of few donor engrafted nucleated cells were of donor origin. The indication that small proportions of donor engrafted cells might be sufficient for clinical control of the disease in patients affected by hemoglobinopathies is relevant,although the biological mechanisms underlying these observations need further investigation.
View Publication
Generation, expansion and functional analysis of endothelial cells and pericytes derived from human pluripotent stem cells.
Human endothelial cells (ECs) and pericytes are of great interest for research on vascular development and disease,as well as for future therapy. This protocol describes the efficient generation of ECs and pericytes from human pluripotent stem cells (hPSCs) under defined conditions. Essential steps for hPSC culture,differentiation,isolation and functional characterization of ECs and pericytes are described. Substantial numbers of both cell types can be derived in only 2-3 weeks: this involves differentiation (10 d),isolation (1 d) and 4 or 10 d of expansion of ECs and pericytes,respectively. We also describe two assays for functional evaluation of hPSC-derived ECs: (i) primary vascular plexus formation upon coculture with hPSC-derived pericytes and (ii) incorporation in the vasculature of zebrafish xenografts in vivo. These assays can be used to test the quality and drug sensitivity of hPSC-derived ECs and model vascular diseases with patient-derived hPSCs.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
H. Wang et al. ( 2019)
Theranostics 9 6 1683--1697
Characterization and Therapeutic Application of Mesenchymal Stem Cells with Neuromesodermal Origin from Human Pluripotent Stem Cells.
Rationale: Mesenchymal stem cells (MSC) hold great promise in the treatment of various diseases including autoimmune diseases,inflammatory diseases,etc.,due to their pleiotropic properties. However,largely incongruent data were obtained from different MSC-based clinical trials,which may be partially due to functional heterogeneity among MSC. Here,we attempt to derive homogeneous mesenchymal stem cells with neuromesodermal origin from human pluripotent stem cells (hPSC) and evaluate their functional properties. Methods: Growth factors and/or small molecules were used for the differentiation of human pluripotent stem cells (hPSC) into neuromesodermal progenitors (NMP),which were then cultured in animal component-free and serum-free induction medium for the derivation and long-term expansion of MSC. The resulted NMP-MSC were detailed characterized by analyzing their surface marker expression,proliferation,migration,multipotency,immunomodulatory activity and global gene expression profile. Moreover,the in vivo therapeutic potential of NMP-MSC was detected in a mouse model of contact hypersensitivity (CHS). Results: We demonstrate that NMP-MSC express posterior HOX genes and exhibit characteristics similar to those of bone marrow MSC (BMSC),and NMP-MSC derived from different hPSC lines show high level of similarity in global gene expression profiles. More importantly,NMP-MSC display much stronger immunomodulatory activity than BMSC in vitro and in vivo,as revealed by decreased inflammatory cell infiltration and diminished production of pro-inflammatory cytokines in inflamed tissue of CHS models. Conclusion: Our results identify NMP as a new source of MSC and suggest that functional and homogeneous NMP-MSC could serve as a candidate for MSC-based therapies.
View Publication
产品类型:
产品号#:
85415
85420
05445
05448
产品名:
SepMate™-15 (IVD), 100 units
SepMate™-15 (IVD)
MesenCult™-ACF Plus培养基
MesenCult™-ACF Plus培养试剂盒
Barruet E et al. (AUG 2016)
Stem cell research & therapy 7 1 115
The ACVR1 R206H mutation found in fibrodysplasia ossificans progressiva increases human induced pluripotent stem cell-derived endothelial cell formation and collagen production through BMP-mediated SMAD1/5/8 signaling.
BACKGROUND The Activin A and bone morphogenetic protein (BMP) pathways are critical regulators of the immune system and of bone formation. Inappropriate activation of these pathways,as in conditions of congenital heterotopic ossification,are thought to activate an osteogenic program in endothelial cells. However,if and how this occurs in human endothelial cells remains unclear. METHODS We used a new directed differentiation protocol to create human induced pluripotent stem cell (hiPSC)-derived endothelial cells (iECs) from patients with fibrodysplasia ossificans progressiva (FOP),a congenital disease of heterotopic ossification caused by an activating R206H mutation in the Activin A type I receptor (ACVR1). This strategy allowed the direct assay of the cell-autonomous effects of ACVR1 R206H in the endogenous locus without the use of transgenic expression. These cells were challenged with BMP or Activin A ligand,and tested for their ability to activate osteogenesis,extracellular matrix production,and differential downstream signaling in the BMP/Activin A pathways. RESULTS We found that FOP iECs could form in conditions with low or absent BMP4. These conditions are not normally permissive in control cells. FOP iECs cultured in mineralization media showed increased alkaline phosphatase staining,suggesting formation of immature osteoblasts,but failed to show mature osteoblastic features. However,FOP iECs expressed more fibroblastic genes and Collagen 1/2 compared to control iECs,suggesting a mechanism for the tissue fibrosis seen in early heterotopic lesions. Finally,FOP iECs showed increased SMAD1/5/8 signaling upon BMP4 stimulation. Contrary to FOP hiPSCs,FOP iECs did not show a significant increase in SMAD1/5/8 phosphorylation upon Activin A stimulation,suggesting that the ACVR1 R206H mutation has a cell type-specific effect. In addition,we found that the expression of ACVR1 and type II receptors were different in hiPSCs and iECs,which could explain the cell type-specific SMAD signaling. CONCLUSIONS Our results suggest that the ACVR1 R206H mutation may not directly increase the formation of mature chondrogenic or osteogenic cells by FOP iECs. Our results also show that BMP can induce endothelial cell dysfunction,increase expression of fibrogenic matrix proteins,and cause differential downstream signaling of the ACVR1 R206H mutation. This iPSC model provides new insight into how human endothelial cells may contribute to the pathogenesis of heterotopic ossification.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Xu S et al. (JAN 2010)
Journal of biomedicine & biotechnology 2010 105940
An improved harvest and in vitro expansion protocol for murine bone marrow-derived mesenchymal stem cells.
Compared to bone marrow (BM) derived mesenchymal stem cells (MSCs) from human origin or from other species,the in vitro expansion and purification of murine MSCs (mMSCs) is much more difficult because of the low MSC yield and the unwanted growth of non-MSCs in the in vitro expansion cultures. We describe a modified protocol to isolate and expand murine BM derived MSCs based on the combination of mechanical crushing and collagenase digestion at the moment of harvest,followed by an immunodepletion step using microbeads coated with CD11b,CD45 and CD34 antibodies. The number of isolated mMSCs as estimated by colony forming unit-fibroblast (CFU-F) assay showed that this modified isolation method could yield 70.0% more primary colonies. After immunodepletion,a homogenous mMSC population could already be obtained after two passages. Immunodepleted mMSCs (ID-mMSCs) are uniformly positive for stem cell antigen-1 (Sca-1),CD90,CD105 and CD73 cell surface markers,but negative for the hematopoietic surface markers CD14,CD34 and CD45. Moreover the immunodepleted cell population exhibits more differentiation potential into adipogenic,osteogenic and chondrogenic lineages. Our data illustrate the development of an efficient and reliable expansion protocol increasing the yield and purity of mMSCs and reducing the overall expansion time.
View Publication
产品类型:
产品号#:
05502
产品名:
Furuya S et al. (OCT 1995)
Journal of neurochemistry 65 4 1551--61
Sphingolipid biosynthesis is necessary for dendrite growth and survival of cerebellar Purkinje cells in culture.
The requirement of complex sphingolipid biosynthesis for growth of neurons was examined in developing rat cerebellar Purkinje neurons using a dissociated culture system. Purkinje cells developed well-differentiated dendrites and axons after 2 weeks in a serum-free nutrient condition. Addition of 2 microM fumonisin B1,a fungal inhibitor of mammalian ceramide synthase,inhibited incorporation of [3H]galactose/glucosamine and [14C]-serine into complex sphingolipids of cultured cerebellar neurons. Under this condition,the expression of Purkinje cell-enriched sphingolipids,including GD1 alpha,9-O-acetylated LD1 and GD3,and sphingomyelin,was significantly decreased. After 2 weeks' exposure to fumonisin B1,dose-dependent measurable decreases in the survival and visually discernible differences in the morphology were seen in fumonisin-treated Purkinje cells. The Purkinje cell dendrites exhibited two types of anomalies; one population of cells developed elongated but less-branched dendrites after a slight time lag,but their branches began to degenerate. In some cells,formation of elongated dendrite trees was severely impaired. However,treatment with fumonisin B1 also led to the formation of spinelike protrusions on the dendrites of Purkinje cells as in control cultures. In contrast to the alterations observed in Purkinje cells,morphology of other cell types including granule neurons appeared to be almost normal after treatment with fumonisin B1. These observations indicated strongly that membrane sphingolipids participate in growth and maintenance of dendrites and in the survival of cerebellar Purkinje cells. Indeed,these effects of fumonisin B1 were reversed,but not completely,by the addition of 6-[[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-amino dcaproyl]sphingosine (C6-NBD-ceramide),a synthetic derivative of ceramide. Thus,we conclude that deprivation of membrane sphingolipids in a culture environment is responsible for aberrant growth of Purkinje cells.
View Publication
产品类型:
产品号#:
73682
73684
产品名:
Fumonisin B1
Fumonisin B1
Vukovic J et al. (AUG 2013)
Stem Cells and Development 22 16 2341--2345
A Novel Fluorescent Reporter CDy1 Enriches for Neural Stem Cells Derived from the Murine Brain
Neurogenesis occurs continuously in two brain regions of adult mammals,underpinned by a pool of resident neural stem cells (NSCs) that can differentiate into all neural cell types. To advance our understanding of NSC function and to develop therapeutic and diagnostic approaches,it is important to accurately identify and enrich for NSCs. There are no definitive markers for the identification and enrichment of NSCs present in the mouse brain. Recently,a fluorescent rosamine dye,CDy1,has been identified as a label for pluripotency in cultured human embryonic and induced pluripotent stem cells. As similar cellular characteristics may enable the uptake and retention of CDy1 by other stem cell populations,we hypothesized that this dye may also enrich for primary NSCs from the mouse brain. Because the subventricular zone (SVZ) and the hippocampus represent brain regions that are highly enriched for NSCs in adult mammals,we sampled cells from these areas to test this hypothesis. These experiments revealed that CDy1 staining indeed allows for enrichment and selection of all neurosphere-forming cells from both the SVZ and the hippocampus. We next examined the effectiveness of CDy1 to select for NSCs derived from the SVZ of aged animals,where the total pool of NSCs present is significantly lower than in young animals. We found that CDy1 effectively labels the NSCs in adult and aged animals as assessed by the neurosphere assay and reflects the numbers of NSCs present in aged animals. CDy1,therefore,appears to be a novel marker for enrichment of NSCs in primary brain tissue preparations.
View Publication
产品类型:
产品号#:
05700
05701
05702
产品名:
NeuroCult™ 基础培养基(小鼠&大鼠)
NeuroCult™ 扩增添加物 (小鼠&大鼠)
NeuroCult™ 扩增试剂盒 (小鼠&大鼠)
(Sep 2024)
Scientific Reports 14
Generation of a pancreas derived hydrogel for the culture of hiPSC derived pancreatic endocrine cells
Stem cell-derived ?-cells (SC-BCs) represent a potential source for curing diabetes. To date,in vitro generated SC-BCs display an immature phenotype and lack important features in comparison to their bona-fide counterparts. Transplantation into a living animal promotes SC-BCs maturation,indicating that components of the in vivo microenvironment trigger final SC-BCs development. Here,we investigated whether cues of the pancreas specific extracellular matrix (ECM) can improve the differentiation of human induced pluripotent stem cells (hiPSCs) towards ?-cells in vitro. To this aim,a pancreas specific ECM (PanMa) hydrogel was generated from decellularized porcine pancreas and its effect on the differentiation of hiPSC-derived pancreatic hormone expressing cells (HECs) was tested. The hydrogel solidified upon neutralization at 37 °C with gelation kinetics similar to Matrigel. Cytocompatibility of the PanMa hydrogel was demonstrated for a culture duration of 21 days. Encapsulation and culture of HECs in the PanMa hydrogel over 7 days resulted in a stable gene and protein expression of most ?-cell markers,but did not improve ?-cell identity. In conclusion,the study describes the production of a PanMa hydrogel,which provides the basis for the development of ECM hydrogels that are more adapted to the demands of SC-BCs.
View Publication