Ikeda Y et al. (MAR 2015)
Gene therapy 23 November 2015 256--262
A novel intranuclear RNA vector system for long-term stem cell modification.
Genetically modified stem and progenitor cells have emerged as a promising regenerative platform in the treatment of genetic and degenerative disorders,highlighted by their successful therapeutic use in inherent immunodeficiencies. However,biosafety concerns over insertional mutagenesis resulting from integrating recombinant viral vectors have overshadowed the widespread clinical applications of genetically modified stem cells. Here,we report an RNA-based episomal vector system,amenable for long-term transgene expression in stem cells. Specifically,we used a unique intranuclear RNA virus,Borna disease virus (BDV),as the gene transfer vehicle,capable of persistent infections in various cell types. BDV-based vectors allowed for long-term transgene expression in mesenchymal stem cells (MSCs) without affecting cellular morphology,cell surface CD105 expression,or the adipogenicity of MSCs. Similarly,replication-defective BDV vectors achieved long-term transduction of human induced pluripotent stem cells (iPSCs),while maintaining the ability to differentiate into three embryonic germ layers. Thus,the BDV-based vectors offer a genomic modification-free,episomal RNA delivery system for sustained stem cell transduction.Gene Therapy accepted article preview online,03 December 2015. doi:10.1038/gt.2015.108.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Kumar S et al. ( 2016)
Stem Cells International 2016 1--20
Utility of Lymphoblastoid Cell Lines for Induced Pluripotent Stem Cell Generation
A large number of EBV immortalized LCLs have been generated and maintained in genetic/epidemiological studies as a perpetual source of DNA and as a surrogate in vitro cell model. Recent successes in reprograming LCLs into iPSCs have paved the way for generating more relevant in vitro disease models using this existing bioresource. However,the overall reprogramming efficiency and success rate remain poor and very little is known about the mechanistic changes that take place at the transcriptome and cellular functional level during LCL-to-iPSC reprogramming. Here,we report a new optimized LCL-to-iPSC reprogramming protocol using episomal plasmids encoding pluripotency transcription factors and mouse p53DD (p53 carboxy-terminal dominant-negative fragment) and commercially available reprogramming media. We achieved a consistently high reprogramming efficiency and 100% success rate using this optimized protocol. Further,we investigated the transcriptional changes in mRNA and miRNA levels,using FC-abs ≥ 2.0 and FDR ≤ 0.05 cutoffs; 5,228 mRNAs and 77 miRNAs were differentially expressed during LCL-to-iPSC reprogramming. The functional enrichment analysis of the upregulated genes and activation of human pluripotency pathways in the reprogrammed iPSCs showed that the generated iPSCs possess transcriptional and functional profiles very similar to those of human ESCs.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Menon MP et al. (MAR 2006)
The Journal of clinical investigation 116 3 683--94
Signals for stress erythropoiesis are integrated via an erythropoietin receptor-phosphotyrosine-343-Stat5 axis.
Anemia due to chronic disease or chemotherapy often is ameliorated by erythropoietin (Epo). Present studies reveal that,unlike steady-state erythropoiesis,erythropoiesis during anemia depends sharply on an Epo receptor-phosphotyrosine-343-Stat5 signaling axis. In mice expressing a phosphotyrosine-null (PY-null) Epo receptor allele (EpoR-HM),severe and persistent anemia was induced by hemolysis or 5-fluorouracil. In short-term transplantation experiments,donor EpoR-HM bone marrow cells also failed to efficiently repopulate the erythroid compartment. In each context,stress erythropoiesis was rescued to WT levels upon the selective restoration of an EpoR PY343 Stat5-binding site (EpoR-H allele). As studied using a unique primary culture system,EpoR-HM erythroblasts exhibited marked stage-specific losses in Epo-dependent growth and survival. EpoR-H PY343 signals restored efficient erythroblast expansion,and the selective Epo induction of the Stat5 target genes proviral integration site-1 (Pim-1) and oncostatin-M. Bcl2-like 1 (Bcl-x),in contrast,was not significantly induced via WT-EpoR,EpoR-HM,or EpoR-H alleles. In Kit+ CD71+ erythroblasts,EpoR-PY343 signals furthermore enhanced SCF growth effects,and SCF modulation of Pim-1 kinase and oncostatin-M expression. In maturing Kit- CD71+ erythroblasts,oncostatin-M exerted antiapoptotic effects that likewise depended on EpoR PY343-mediated events. Stress erythropoiesis,therefore,requires stage-specific EpoR-PY343-Stat5 signals,some of which selectively bolster SCF and oncostatin-M action.
View Publication
产品类型:
产品号#:
产品名:
文献
Rim JS et al. (JAN 2011)
Methods in molecular biology (Clifton,N.J.) 702 299--316
Screening for Epigenetic Target Genes that Enhance Reprogramming Using Lentiviral-Delivered shRNA
Small molecules will need to be identified and/or developed that target protein classes limiting reprogramming efficiency. A specific class of proteins includes epigenetic regulators that silence,or minimize expression,of pluripotency genes in differentiated cells. To better understand the role of specific epigenetic modulators in reprogramming,we have used shRNA delivered by lentivirus to assess the significance of individual epi-proteins in reprogramming pluripotent gene expression.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Maloney PR et al. (AUG 2000)
Journal of medicinal chemistry 43 16 2971--4
Identification of a chemical tool for the orphan nuclear receptor FXR.
A viral strategy for targeting and manipulating interneurons across vertebrate species.
A fundamental impediment to understanding the brain is the availability of inexpensive and robust methods for targeting and manipulating specific neuronal populations. The need to overcome this barrier is pressing because there are considerable anatomical,physiological,cognitive and behavioral differences between mice and higher mammalian species in which it is difficult to specifically target and manipulate genetically defined functional cell types. In particular,it is unclear the degree to which insights from mouse models can shed light on the neural mechanisms that mediate cognitive functions in higher species,including humans. Here we describe a novel recombinant adeno-associated virus that restricts gene expression to GABAergic interneurons within the telencephalon. We demonstrate that the viral expression is specific and robust,allowing for morphological visualization,activity monitoring and functional manipulation of interneurons in both mice and non-genetically tractable species,thus opening the possibility to study GABAergic function in virtually any vertebrate species.
View Publication
产品类型:
产品号#:
05790
05792
05793
85850
85857
产品名:
BrainPhys™神经元培养基
BrainPhys™神经元培养基和SM1试剂盒
BrainPhys™ 神经元培养基N2-A和SM1试剂盒
mTeSR™1
mTeSR™1
文献
Nagata S et al. ( )
Nature 319 6052 415--8
Molecular cloning and expression of cDNA for human granulocyte colony-stimulating factor.
Granulocyte colony-stimulating factor (G-CSF) is a member of the CSF family of hormone-like glycoproteins that regulate haematopoietic cell proliferation and differentiation,and G-CSF almost exclusively stimulates the colony formation of granulocytes from committed precursor cells in semi-solid agar culture. Recently,Nomura et al. have established a human squamous carcinoma cell line (designated CHU-2) from a human oral cavity tumour which produces large quantities of CSF constitutively,and the CSF produced by CHU-2 cells has been purified to homogeneity from the conditioned medium. We have now determined the partial amino-acid sequence of the purified G-CSF protein,and by using oligonucleotides as probes,have isolated several clones containing G-CSF complementary DNA from the cDNA library prepared with messenger RNA from CHU-2 cells. The complete nucleotide sequences of two of these cDNAs were determined and the expression of the cDNA in monkey COS cells gave rise to a protein showing authentic G-CSF activity. Furthermore,Southern hybridization analysis of DNA from normal leukocytes and CHU-2 cells suggests that the human genome contains only one gene for G-CSF and that some rearrangement has occurred within one of the alleles of the G-CSF gene in CHU-2 cells.
View Publication
产品类型:
产品号#:
产品名:
文献
Di Cristofori A et al. (JUL 2015)
Oncotarget 6 19 17514--31
The vacuolar H+ ATPase is a novel therapeutic target for glioblastoma.
The vacuolar H+ ATPase (V-ATPase) is a proton pump responsible for acidification of cellular microenvironments,an activity exploited by tumors to survive,proliferate and resist to therapy. Despite few observations,the role of V-ATPase in human tumorigenesis remains unclear.We investigated the expression of ATP6V0C,ATP6V0A2,encoding two subunits belonging to the V-ATPase V0 sector and ATP6V1C,ATP6V1G1,ATPT6V1G2,ATP6V1G3,which are part of the V1 sector,in series of adult gliomas and in cancer stem cell-enriched neurospheres isolated from glioblastoma (GBM) patients. ATP6V1G1 expression resulted significantly upregulated in tissues of patients with GBM and correlated with shorter patients' overall survival independent of clinical variables.ATP6V1G1 knockdown in GBM neurospheres hampered sphere-forming ability,induced cell death,and decreased matrix invasion,a phenotype not observed in GBM monolayer cultures. Treating GBM organotypic cultures or neurospheres with the selective V-ATPase inhibitor bafilomycin A1 reproduced the effects of ATP6V1G1 siRNA and strongly suppressed expression of the stem cell markers Nestin,CD133 and transcription factors SALL2 and POU3F2 in neurospheres.These data point to ATP6V1G1 as a novel marker of poor prognosis in GBM patients and identify V-ATPase inhibition as an innovative therapeutic strategy for GBM.
View Publication
产品类型:
产品号#:
05750
05751
产品名:
NeuroCult™ NS-A 基础培养基(人)
NeuroCult™ NS-A 扩增试剂盒(人)
文献
Lin L and Chan S-O (JUN 2003)
The European journal of neuroscience 17 11 2299--312
Perturbation of CD44 function affects chiasmatic routing of retinal axons in brain slice preparations of the mouse retinofugal pathway.
Neurons generated early in development of the ventral diencephalon have been shown to play a key role in defining the midline and the caudal boundary of the optic chiasm in the mouse retinofugal pathway. These functions have been attributed to a surface bound adhesion molecule,CD44 that is expressed in these chiasmatic neurons. In this study,we investigated the effects of perturbing normal CD44 functions on axon routing in brain slice preparations of the mouse retinofugal pathway. Two CD44 antibodies (Hermes-1 and IM7) were used that bind to distinct epitopes on the extracellular domain of the molecule. We found that both antibodies produced dramatic defects in routing of the retinal axons that arrive early in the chiasm. In preparations of embryonic day 13 (E13) and E14 pathways,the crossed component in the chiasm was significantly reduced after antibody treatment. However,such reduction in axon crossing was not observed in E15 chiasm,indicating that the lately generated crossed axons lost their responses to CD44. Furthermore,the anti-CD44 treatment produced a reduction in the uncrossed component in the E15 but not in younger pathways,suggesting a selective response of the lately generated axons,mostly from ventral temporal retina,but not those generated earlier,to the CD44 at the chiasmatic midline in order to make their turn for the uncrossed pathway. These findings provide evidence that a normal function of CD44 molecules in the chiasmatic neurons is essential for axon crossing and axon divergence at the mouse optic chiasm.
View Publication
产品类型:
产品号#:
产品名:
文献
Park SI et al. ( 2008)
Cancer research 68 9 3323--3333
Targeting SRC family kinases inhibits growth and lymph node metastases of prostate cancer in an orthotopic nude mouse model.
Aberrant expression and/or activity of members of the Src family of nonreceptor protein tyrosine kinases (SFK) are commonly observed in progressive stages of human tumors. In prostate cancer,two SFKs (Src and Lyn) have been specifically implicated in tumor growth and progression. However,there are no data in preclinical models demonstrating potential efficacy of Src inhibitors against prostate cancer growth and/or metastasis. In this study,we used the small molecule SFK/Abl kinase inhibitor dasatinib,currently in clinical trials for solid tumors,to examine in vitro and in vivo effects of inhibiting SFKs in prostate tumor cells. In vitro,dasatinib inhibits both Src and Lyn activity,resulting in decreased cellular proliferation,migration,and invasion. In orthotopic nude mouse models,dasatinib treatment effectively inhibits expression of activated SFKs,resulting in inhibition of both tumor growth and development of lymph node metastases in both androgen-sensitive and androgen-resistant tumors. In primary tumors,SFK inhibition leads to decreased cellular proliferation (determined by immunohistochemistry for proliferating cell nuclear antigen). In vitro,small interfering RNA (siRNA)-mediated inhibition of Lyn affects cellular proliferation; siRNA inhibition of Src affects primarily cellular migration. Therefore,we conclude that SFKs are promising therapeutic targets for treatment of human prostate cancer and that Src and Lyn activities affect different cellular functions required for prostate tumor growth and progression.
View Publication
产品类型:
产品号#:
73082
73084
产品名:
达沙替尼
达沙替尼
文献
Scharenberg CW et al. (JAN 2002)
Blood 99 2 507--12
The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors.
A promising and increasingly exploited property of hematopoietic stem cells is their ability to efflux the fluorescent dye Hoechst 33342. The Hoechst-negative cells are isolated by fluorescence-activated cell sorting as a so-called side population" (SP) of bone marrow. This SP from bone marrow�
View Publication