Mechanosensitive Differentiation of Human iPS Cell-Derived Podocytes
Stem cell fate decisions,including proliferation,differentiation,morphological changes,and viability,are impacted by microenvironmental cues such as physical and biochemical signals. However,the specific impact of matrix elasticity on kidney cell development and function remains less understood due to the lack of models that can closely recapitulate human kidney biology. An established protocol to differentiate podocytes from human-induced pluripotent stem (iPS) cells provides a promising avenue to elucidate the role of matrix elasticity in kidney tissue development and lineage determination. In this study,we synthesized polyacrylamide hydrogels with different stiffnesses and investigated their ability to promote podocyte differentiation and biomolecular characteristics. We found that 3 kPa and 10 kPa hydrogels significantly support the adhesion,differentiation,and viability of podocytes. Differentiating podocytes on a more compliant (0.7 kPa) hydrogel resulted in significant cell loss and detachment. Further investigation of the mechanosensitive proteins yes-associated protein (YAP) and synaptopodin revealed nuanced molecular distinctions in cellular responses to matrix elasticity that may otherwise be overlooked if morphology and cell spreading alone were used as the primary metric for selecting matrices for podocyte differentiation. Specifically,hydrogels with kidney-like rigidities outperformed traditional tissue culture plates at modulating the molecular-level expression of active mechanosensitive proteins critical for podocyte health and function. These findings could guide the development of physiologically relevant platforms for kidney tissue engineering,disease modeling,and mechanistic studies of organ physiology and pathophysiology. Such advances are critical for realizing the full potential of in vitro platforms in accurately predicting human biological responses.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
Y. Li et al. (Oct 2024)
Journal of Experimental & Clinical Cancer Research : CR 43 3
Enhancer looping protein LDB1 modulates MYB expression in T-ALL cell lines in vitro by cooperating with master transcription factors
Despite significant progress in the prognosis of pediatric T-cell acute lymphoblastic leukemia (T-ALL) in recent decades,a notable portion of children still confronts challenges such as treatment resistance and recurrence,leading to limited options and a poor prognosis. LIM domain-binding protein 1 (LDB1) has been confirmed to exert a crucial role in various physiological and pathological processes. In our research,we aim to elucidate the underlying function and mechanisms of LDB1 within the background of T-ALL. Employing short hairpin RNA (shRNA) techniques,we delineated the functional impact of LDB1 in T-ALL cell lines. Through the application of RNA-Seq,CUT&Tag,and immunoprecipitation assays,we scrutinized master transcription factors cooperating with LDB1 and identified downstream targets under LDB1 regulation. LDB1 emerges as a critical transcription factor co-activator in cell lines derived from T-ALL. It primarily collaborates with master transcription factors (ERG,ETV6,IRF1) to cooperatively regulate the transcription of downstream target genes. Both in vitro and in vivo experiments affirm the essential fuction of LDB1 in the proliferation and survival of cell lines derived from T-ALL,with MYB identified as a significant downstream target of LDB1. To sum up,our research establishes the pivotal fuction of LDB1 in the tumorigenesis and progression of T-ALL cell lines. Mechanistic insights reveal that LDB1 cooperates with ERG,ETV6,and IRF1 to modulate the expression of downstream effector genes. Furthermore,LDB1 controls MYB through remote enhancer modulation,providing valuable mechanistic insights into its involvement in the progression of T-ALL. The online version contains supplementary material available at 10.1186/s13046-024-03199-1.
View Publication
产品类型:
产品号#:
04230
产品名:
MethoCult™H4230
Sandströ et al. (FEB 2017)
Toxicology in vitro : an international journal published in association with BIBRA 38 124--135
Development and characterization of a human embryonic stem cell-derived 3D neural tissue model for neurotoxicity testing.
Alternative models for more rapid compound safety testing are of increasing demand. With emerging techniques using human pluripotent stem cells,the possibility of generating human in vitro models has gained interest,as factors related to species differences could be potentially eliminated. When studying potential neurotoxic effects of a compound it is of crucial importance to have both neurons and glial cells. We have successfully developed a protocol for generating in vitro 3D human neural tissues,using neural progenitor cells derived from human embryonic stem cells. These 3D neural tissues can be maintained for two months and undergo progressive differentiation. We showed a gradual decreased expression of early neural lineage markers,paralleled by an increase in markers specific for mature neurons,astrocytes and oligodendrocytes. At the end of the two-month culture period the neural tissues not only displayed synapses and immature myelin sheaths around axons,but electrophysiological measurements also showed spontaneous activity. Neurotoxicity testing - comparing non-neurotoxic to known neurotoxic model compounds - showed an expected increase in the marker of astroglial reactivity after exposure to known neurotoxicants methylmercury and trimethyltin. Although further characterization and refinement of the model is required,these results indicate its potential usefulness for in vitro neurotoxicity testing.
View Publication
产品类型:
产品号#:
05860
05880
产品名:
Xia Y et al. (OCT 2016)
Journal of hepatology
Human stem cell-derived hepatocytes as a model for hepatitis B virus infection, spreading and virus-host interactions.
BACKGROUND & AIMS One major obstacle of hepatitis B virus (HBV) research is the lack of efficient cell culture system permissive for viral infection and replication. The aim of our study was to establish a robust HBV infection model by using hepatocyte-like cells (HLCs) derived from human pluripotent stem cells. METHODS HLCs were differentiated from human embryonic stem cells and induced pluripotent stem cells. Maturation of hepatocyte functions was determined. After HBV infection,total viral DNA,cccDNA,total viral RNA,pgRNA,HBeAg and HBsAg were measured. RESULTS More than 90% of the HLCs expressed strong signals of human hepatocyte markers,like albumin,as well as known host factors required for HBV infection,suggesting that these cells possessed key features of mature hepatocytes. Notably,HLCs expressed the viral receptor sodium-taurocholate cotransporting polypeptide more stably than primary human hepatocytes (PHHs). HLCs supported robust infection and some spreading of HBV. Finally,by using this model,we identified two host-targeting agents,genistin and PA452,as novel antivirals. CONCLUSIONS Stem cell-derived HLCs fully support HBV infection. This novel HLC HBV infection model offers a unique opportunity to advance our understanding of the molecular details of the HBV life cycle; to further characterize virus-host interactions and to define new targets for HBV curative treatment. LAY SUMMARY Our study used human pluripotent stem cells to develop hepatocyte-like cells (HLCs) capable of expressing hepatocyte markers and host factors important for HBV infection. These cells fully support HBV infection and virus-host interactions,allowing for the identification of two novel antiviral agents. Thus,stem cell-derived HLCs provide a highly physiologically relevant system to advance our understanding of viral life cycle and provide a new tool for antiviral drug screening and development.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Palmer JA et al. (AUG 2013)
Birth Defects Research Part B - Developmental and Reproductive Toxicology 98 4 343--363
Establishment and assessment of a new human embryonic stem cell-based biomarker assay for developmental toxicity screening
A metabolic biomarker-based in vitro assay utilizing human embryonic stem (hES) cells was developed to identify the concentration of test compounds that perturbs cellular metabolism in a manner indicative of teratogenicity. This assay is designed to aid the early discovery-phase detection of potential human developmental toxicants. In this study,metabolomic data from hES cell culture media were used to assess potential biomarkers for development of a rapid in vitro teratogenicity assay. hES cells were treated with pharmaceuticals of known human teratogenicity at a concentration equivalent to their published human peak therapeutic plasma concentration. Two metabolite biomarkers (ornithine and cystine) were identified as indicators of developmental toxicity. A targeted exposure-based biomarker assay using these metabolites,along with a cytotoxicity endpoint,was then developed using a 9-point dose–response curve. The predictivity of the new assay was evaluated using a separate set of test compounds. To illustrate how the assay could be applied to compounds of unknown potential for developmental toxicity,an additional 10 compounds were evaluated that do not have data on human exposure during pregnancy,but have shown positive results in animal developmental toxicity studies. The new assay identified the potential developmental toxicants in the test set with 77% accuracy (57% sensitivity,100% specificity). The assay had a high concordance (≥75%) with existing in vivo models,demonstrating that the new assay can predict the developmental toxicity potential of new compounds as part of discovery phase testing and provide a signal as to the likely outcome of required in vivo tests.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Moore JC et al. (MAR 2010)
Stem Cell Research 4 2 92--106
A high-resolution molecular-based panel of assays for identification and characterization of human embryonic stem cell lines
Meticulous characterization of human embryonic stem cells (hESC) is critical to their eventual use in cell-based therapies,particularly in view of the diverse methods for derivation and maintenance of these cell lines. However,characterization methods are generally not standardized and many currently used assays are subjective,making dependable and direct comparison of cell lines difficult. In order to address this problem,we selected 10 molecular-based high-resolution assays as components of a panel for characterization of hESC. The selection of the assays was primarily based on their quantitative or objective (rather than subjective) nature. We demonstrate the efficacy of this panel by characterizing 4 hESC lines,derived in two different laboratories using different derivation techniques,as pathogen free,genetically stable,and able to differentiate into derivatives of all three germ layers. Our panel expands and refines a characterization panel previously proposed by the International Stem Cell Initiative and is another step toward standardized hESC characterization and quality control,a crucial element of successful hESC research and clinical translation.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
T. Zhang et al. (Apr 2025)
Cancer Cell International 25 6
Heme oxygenase 1 confers gilteritinib resistance in FLT3-ITD acute myeloid leukemia in a STAT6-dependent manner
Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults. We previously discovered that heme oxygenase 1 (HO1) is crucial for chemoresistance in AML,but the detailed molecular mechanism of that remains unclear. RNA sequencing was conducted to assess transcriptomic changes in three pairs of AML cells after regulating the expression of HO1. The molecular mechanism by which HO1 induces gilteritinib resistance in FLT3-ITD (FMS-like tyrosine kinase 3 (FLT3) internal tandem duplication (ITD)) AML was evaluated by quantitative real-time PCR (qRT-PCR),CCK-8,flow cytometry,and western blotting. FLT3-ITD AML mouse models were established to investigate the effects of HO1 expression on gilteritinib resistance in vivo. In these three pairs of AML cells,we discovered that HO1-mediated drug resistance is connected to the interleukin-4-mediated signaling pathway (specifically STAT6) only in MV4-11 cells with the FLT3-ITD mutation. Further findings revealed that HO1 overexpression confers gilteritinib resistance in FLT3-ITD AML cell lines and primary individual specimens. While suppression of HO1 sensitized FLT3-ITD AML cell lines and primary individual specimens to gilteritinib. Mechanistically,western blotting and flow cytometry confirmed that HO1-mediated gilteritinib resistance is related to STAT6 phosphorylation in FLT3-ITD AML cell lines and primary individual specimens. Moreover,tumor-bearing mice were employed to determine that HO1 overexpression conferred gilteritinib resistance in vivo. Collectively,these studies illustrate that HO1 may act as a successful treatment target for gilteritinib-resistant FLT3-ITD AML patients. The online version contains supplementary material available at 10.1186/s12935-025-03757-3.
View Publication
产品类型:
产品号#:
09720
产品名:
StemSpan™白血病细胞培养试剂盒
Ungrin MD et al. (APR 2012)
Biotechnology and bioengineering 109 4 853--66
Rational bioprocess design for human pluripotent stem cell expansion and endoderm differentiation based on cellular dynamics.
We present a predictive bioprocess design strategy employing cell- and molecular-level analysis of rate-limiting steps in human pluripotent stem cell (hPSC) expansion and differentiation,and apply it to produce definitive endoderm (DE) progenitors using a scalable directed-differentiation technology. We define a bioprocess optimization parameter (L; targeted cell Loss) and,with quantitative cell division tracking and fate monitoring,identify and overcome key suspension bioprocess bottlenecks. Adapting process operating conditions to pivotal parameters (single cell survival and growth rate) in a cell-line-specific manner enabled adherent-equivalent expansion of hPSCs in feeder- and matrix-free defined-medium suspension culture. Predominantly instructive differentiation mechanisms were found to underlie a subsequent 18-fold expansion,during directed differentiation,to high-purity DE competent for further commitment along pancreatic and hepatic lineages. This study demonstrates that iPSC expansion and differentiation conditions can be prospectively specified to guide the enhanced production of target cells in a scale-free directed differentiation system.
View Publication
产品类型:
产品号#:
27845
27945
27840
27865
27940
27965
产品名:
Ermakov A et al. (NOV 2012)
Stem Cell Research 9 3 171--184
A role for intracellular calcium downstream of G-protein signaling in undifferentiated human embryonic stem cell culture
Multiple signalling pathways maintain human embryonic stem cells (hESC) in an undifferentiated state. Here we sought to define the significance of G protein signal transduction in the preservation of this state distinct from other cellular processes. Continuous treatment with drugs targeting G(αs)-,G(α-i/o)- and G(α-q/11)-subunit signalling mediators were assessed in independent hESC lines after 7days to discern effects on normalised alkaline phosphatase positive colony frequency vs total cell content. This identified PLCβ,intracellular free calcium and CAMKII kinase activity downstream of G(α-q/11) as of particular importance to the former. To confirm the significance of this finding we generated an agonist-responsive hESC line transgenic for a G(α-q/11) subunit-coupled receptor and demonstrated that an undifferentiated state could be promoted in the presence of an agonist without exogenously supplied bFGF and that this correlated with elevated intracellular calcium. Similarly,treatment of unmodified hESCs with a range of intracellular free calcium-modulating drugs in biologically defined mTESR culture system lacking exogenous bFGF promoted an hESC phenotype after 1week of continuous culture as defined by co-expression of OCT4 and NANOG. At least one of these drugs,lysophosphatidic acid significantly elevates phosphorylation of calmodulin and STAT3 in this culture system (ptextless0.05). These findings substantiate a role for G-protein and calcium signalling in undifferentiated hESC culture.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
(Jun 2024)
PLOS ONE 19 6
Blockade of SIRPα-CD47 axis by anti-SIRPα antibody enhances anti-tumor activity of DXd antibody-drug conjugates
Signal regulatory protein alpha (SIRPα) is an immune inhibitory receptor on myeloid cells including macrophages and dendritic cells,which binds to CD47,a ubiquitous self-associated molecule. SIRPα-CD47 interaction is exploited by cancer cells to suppress anti-tumor activity of myeloid cells,therefore emerging as a novel immune checkpoint for cancer immunotherapy. In blood cancer,several SIRPα-CD47 blockers have shown encouraging monotherapy activity. However,the anti-tumor activity of SIRPα-CD47 blockers in solid tumors seems limited,suggesting the need for combination therapies to fully exploit the myeloid immune checkpoint in solid tumors. Here we tested whether combination of SIRPα-CD47 blocker with antibody-drug conjugate bearing a topoisomerase I inhibitor DXd (DXd-ADC) would enhance anti-tumor activity in solid tumors. To this end,DS-1103a,a newly developed anti-human SIRPα antibody (Ab),was assessed for the potential combination benefit with datopotamab deruxtecan (Dato-DXd) and trastuzumab deruxtecan (T-DXd),DXd-ADCs targeting human trophoblast cell-surface antigen 2 and human epidermal growth factor receptor 2,respectively. DS-1103a inhibited SIRPα-CD47 interaction and enhanced antibody-dependent cellular phagocytosis of Dato-DXd and T-DXd against human cancer cells. In a whole cancer cell vaccination model,vaccination with DXd-treated cancer cells led to activation of tumor-specific T cells when combined with an anti-mouse SIRPα (anti-mSIRPα) Ab,implying the benefit of combining DXd-ADCs with anti-SIRPα Ab on anti-tumor immunity. Furthermore,in syngeneic mouse models,both Dato-DXd and T-DXd combination with anti-mSIRPα Ab showed stronger anti-tumor activity over the monotherapies. Taken together,this study provides a preclinical rationale of novel therapies for solid tumors combining SIRPα-CD47 blockers with DXd-ADCs.
View Publication