Loss of the Rho GTPase activating protein p190-B enhances hematopoietic stem cell engraftment potential.
Hematopoietic stem cell (HSC) engraftment is a multistep process involving HSC homing to bone marrow,self-renewal,proliferation,and differentiation to mature blood cells. Here,we show that loss of p190-B RhoGTPase activating protein,a negative regulator of Rho GTPases,results in enhanced long-term engraftment during serial transplantation. This effect is associated with maintenance of functional HSC-enriched cells. Furthermore,loss of p190-B led to marked improvement of HSC in vivo repopulation capacity during ex vivo culture without altering proliferation and multilineage differentiation of HSC and progeny. Transcriptional analysis revealed that p190-B deficiency represses the up-regulation of p16(Ink4a) in HSCs in primary and secondary transplantation recipients,providing a possible mechanism of p190-B-mediated HSC functions. Our study defines p190-B as a critical transducer element of HSC self-renewal activity and long-term engraftment,thus suggesting that p190-B is a target for HSC-based therapies requiring maintenance of engraftment phenotype.
View Publication
产品类型:
产品号#:
09600
09650
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
Yu H et al. (FEB 2006)
Blood 107 3 1200--6
Hematopoietic stem cell exhaustion impacted by p18 INK4C and p21 Cip1/Waf1 in opposite manners.
Transplantation-associated stress can compromise the hematopoietic potential of hematopoietic stem cells (HSCs). As a consequence,HSCs may undergo exhaustion" in serial transplant recipients
View Publication
产品类型:
产品号#:
18856
18856RF
产品名:
J. Lam et al. (JUN 2018)
Nature communications 9 1 2418
miR-143/145 differentially regulate hematopoietic stem and progenitor activity through suppression of canonical TGFbeta$ signaling.
Expression of miR-143 and miR-145 is reduced in hematopoietic stem/progenitor cells (HSPCs) of myelodysplastic syndrome patients with a deletion in the long arm of chromosome 5. Here we show that mice lacking miR-143/145 have impaired HSPC activity with depletion of functional hematopoietic stem cells (HSCs),but activation of progenitor cells (HPCs). We identify components of the transforming growth factor beta$ (TGFbeta$) pathway as key targets of miR-143/145. Enforced expression of the TGFbeta$ adaptor protein and miR-145 target,Disabled-2 (DAB2),recapitulates the HSC defect seen in miR-143/145-/- mice. Despite reduced HSC activity,older miR-143/145-/- and DAB2-expressing mice show elevated leukocyte counts associated with increased HPC activity. A subset of mice develop a serially transplantable myeloid malignancy,associated with expansion of HPC. Thus,miR-143/145 play a cell context-dependent role in HSPC function through regulation of TGFbeta$/DAB2 activation,and loss of these miRNAs creates a preleukemic state.
View Publication
产品类型:
产品号#:
03434
03444
05350
产品名:
MethoCult™GF M3434
MethoCult™GF M3434
Farese AM et al. (JAN 1996)
Blood 87 2 581--91
Acceleration of hematopoietic reconstitution with a synthetic cytokine (SC-55494) after radiation-induced bone marrow aplasia.
The synthetic cytokine (Synthokine) SC-55494 is a high-affinity interleukin-3 (IL-3) receptor ligand that stimulates greater in vitro multilineage hematopoietic activity than native IL-3,while inducing no significant increase in inflammatory activity relative to native IL-3. The aim of this study was to investigate the in vivo hematopoietic response of rhesus monkeys receiving Synthokine after radiation-induced marrow aplasia. Administration schedule and dose of Synthokine were evaluated. All animals were total-body irradiated (TBI) with 700 cGy 60Co gamma radiation on day 0. Beginning on day 1,cohorts of animals (n = 5) received Synthokine subcutaneously (SC) twice daily with 25 micrograms/kg/d or 100 micrograms/kg/d for 23 days or 100 micrograms/kg/d for 14 days. Control animals (n = 9) received human serum albumin SC once daily at 15 micrograms/kg/d for 23 days. Complete blood counts were monitored for 60 days postirradiation and the durations of neutropenia (NEUT; absolute neutrophil count [ANC] textless 500/microL) and thrombocytopenia (THROM; platelet count textless 20,000/microL) were assessed. Synthokine significantly (P textless .05) reduced the duration of THROM versus the HSA-treated animals regardless of dose or protocol length. The most striking reduction was obtained in the animals receiving 100 micrograms/kg/d for 23 days (THROM = 3.5 v 12.5 days in HSA control animals). Although the duration of NEUT was not significantly altered,the depth of the nadir was significantly lessened in all animal cohorts treated with Synthokine regardless of dose versus schedule length. Bone marrow progenitor cell cultures indicated a beneficial effect of Synthokine on the recovery of granulocyte-macrophage colony-forming units that was significantly higher at day 24 post-TBI in both cohorts treated at 25 and 100 micrograms/kg/d for 23 days relative to the control animals. Plasma pharmacokinetic parameters were evaluated in both normal and irradiated animals. Pharmacokinetic analysis performed in irradiated animals after 1 week of treatment suggests an effect of repetitive Synthokine schedule and/or TBI on distribution and/or elimination of Synthokine. These data show that the Synthokine,SC55 94,administered therapeutically post-TBI,significantly enhanced platelet recovery and modulated neutrophil nadir and may be clinically useful in the treatment of the myeloablated host.
View Publication
产品类型:
产品号#:
04436
04064
04100
04230
04236
04431
04434
04444
04464
04531
04535
04545
04536
04564
04035
04330
04034
04044
04435
04445
04534
04544
04437
04447
产品名:
MethoCult™ SF H4436
MethoCult™ H4034 Optimum启动试剂盒套装
MethoCult™ H4100
MethoCult™H4230
MethoCult™SF H4236
MethoCult™H4431
MethoCult™H4434经典
MethoCult™H4434经典
MethoCult™ H4434 Classic启动试剂盒套装
MethoCult™H4531
MethoCult™H4535富集无EPO
MethoCult™ H4535 Enriched,不含EPO
MethoCult™ SF H4536
入门套件MethoCult™H4534经典无EPO
MethoCult™H4035 Optimum无EPO
MethoCult™H4330
MethoCult™H4034 Optimum
MethoCult™H4034 Optimum
MethoCult™H4435富集
MethoCult™H4435富集
MethoCult™H4534经典无EPO
MethoCult™H4534经典无EPO
MethoCult™表达
MethoCult™表达
J. Robert et al. (May 2025)
Nature Communications 16
Expression of an interleukin-2 partial agonist enhances regulatory T cell persistence and efficacy in mouse autoimmune models
Regulatory T (Treg)-based cell therapy holds promise for autoimmune and inflammatory diseases,yet challenges remain regarding the functional stability and persistence of transferred Tregs. Here we engineer Tregs to express a partial agonist form of IL-2 (IL-2pa) to enhance persistence while avoiding toxicity from excessive signaling. Mouse Tregs expressing wild-type IL-2 (Tregs-IL2wt) have only a transient growth advantage,limited by toxicity from likely excessive signaling. By contrast,mouse Tregs-IL2pa exhibit sustained expansion,long-term survival in immunocompetent mice for over a year,and bystander expansion of endogenous Tregs. Tregs-IL2pa maintain a stable activated phenotype,Treg-specific demethylation,and a diverse TCR repertoire. In vivo,prophylactic transfer of Tregs-IL2pa ameliorates multi-organ autoimmunity in a Treg depletion-induced mouse autoimmune model. Lastly,compared with control Treg,human Tregs-IL2pa show enhanced survival in the IL-2-depleted environment of immune-deficient mice and improved control of xenogeneic graft-versus-host disease. Our results thus show that IL-2pa self-sufficiency enhances the stability,durability and efficacy of Treg therapies in preclinical settings. Subject terms: Cell delivery,Regulatory T cells,Autoimmune diseases,Interleukins
View Publication
Brief report: efficient generation of hematopoietic precursors and progenitors from human pluripotent stem cell lines.
By mimicking embryonic development of the hematopoietic system,we have developed an optimized in vitro differentiation protocol for the generation of precursors of hematopoietic lineages and primitive hematopoietic cells from human embryonic stem cells (ESC) and induced pluripotent stem cells (iPSCs). Factors such as cytokines,extra cellular matrix components,and small molecules as well as the temporal association and concentration of these factors were tested on seven different human ESC and iPSC lines. We report the differentiation of up to 84% human CD45+ cells (average 41% ± 16%,from seven pluripotent lines) from the differentiation culture,including significant numbers of primitive CD45+/CD34+ and CD45+/CD34+/CD38- hematopoietic progenitors. Moreover,the numbers of hematopoietic progenitor cells generated,as measured by colony forming unit assays,were comparable to numbers obtained from fresh umbilical cord blood mononuclear cell isolates on a per CD45+ cell basis. Our approach demonstrates highly efficient generation of multipotent hematopoietic progenitors with among the highest efficiencies reported to date (CD45+/CD34+) using a single standardized differentiation protocol on several human ESC and iPSC lines. Our data add to the cumulating evidence for the existence of an in vitro derived precursor to the hematopoietic stem cell (HSC) with limited engrafting ability in transplanted mice but with multipotent hematopoietic potential. Because this protocol efficiently expands the preblood precursors and hematopoietic progenitors,it is ideal for testing novel factors for the generation and expansion of definitive HSCs with long-term repopulating ability.
View Publication
产品类型:
产品号#:
72192
72194
产品名:
前列腺素E2(Prostaglandin E2)
前列腺素E2(Prostaglandin E2)
(May 2024)
Cell Communication and Signaling : CCS 22 1
Megakaryocytic IGF1 coordinates activation and ferroptosis to safeguard hematopoietic stem cell regeneration after radiation injury
BackgroundHematopoietic stem cell (HSC) regeneration underlies hematopoietic recovery from myelosuppression,which is a life-threatening side effect of cytotoxicity. HSC niche is profoundly disrupted after myelosuppressive injury,while if and how the niche is reshaped and regulates HSC regeneration are poorly understood.MethodsA mouse model of radiation injury-induced myelosuppression was built by exposing mice to a sublethal dose of ionizing radiation. The dynamic changes in the number,distribution and functionality of HSCs and megakaryocytes were determined by flow cytometry,immunofluorescence,colony assay and bone marrow transplantation,in combination with transcriptomic analysis. The communication between HSCs and megakaryocytes was determined using a coculture system and adoptive transfer. The signaling mechanism was investigated both in vivo and in vitro,and was consolidated using megakaryocyte-specific knockout mice and transgenic mice.ResultsMegakaryocytes become a predominant component of HSC niche and localize closer to HSCs after radiation injury. Meanwhile,transient insulin-like growth factor 1 (IGF1) hypersecretion is predominantly provoked in megakaryocytes after radiation injury,whereas HSCs regenerate paralleling megakaryocytic IGF1 hypersecretion. Mechanistically,HSCs are particularly susceptible to megakaryocytic IGF1 hypersecretion,and mTOR downstream of IGF1 signaling not only promotes activation including proliferation and mitochondrial oxidative metabolism of HSCs,but also inhibits ferritinophagy to restrict HSC ferroptosis. Consequently,the delicate coordination between proliferation,mitochondrial oxidative metabolism and ferroptosis ensures functional HSC expansion after radiation injury. Importantly,punctual IGF1 administration simultaneously promotes HSC regeneration and hematopoietic recovery after radiation injury,representing a superior therapeutic approach for myelosuppression.ConclusionsOur study identifies megakaryocytes as a last line of defense against myelosuppressive injury and megakaryocytic IGF1 as a novel niche signal safeguarding HSC regeneration.Supplementary InformationThe online version contains supplementary material available at 10.1186/s12964-024-01651-5.
View Publication
Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines.
Efficient differentiation of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) to a variety of lineages requires step-wise approaches replicating the key commitment stages found during embryonic development. Here we show that expression of PdgfR-α segregates mouse ESC-derived Flk-1 mesoderm into Flk-1(+)PdgfR-α(+) cardiac and Flk-1(+)PdgfR-α(-) hematopoietic subpopulations. By monitoring Flk-1 and PdgfR-α expression,we found that specification of cardiac mesoderm and cardiomyocytes is determined by remarkably small changes in levels of Activin/Nodal and BMP signaling. Translation to human ESCs and iPSCs revealed that the emergence of cardiac mesoderm could also be monitored by coexpression of KDR and PDGFR-α and that this process was similarly dependent on optimal levels of Activin/Nodal and BMP signaling. Importantly,we found that individual mouse and human pluripotent stem cell lines require optimization of these signaling pathways for efficient cardiac differentiation,illustrating a principle that may well apply in other contexts.
View Publication
产品类型:
产品号#:
72102
72232
72234
100-0246
100-1051
产品名:
Dorsomorphin
SB431542 (Hydrate)
SB431542(水合物)
白消安(Busulfan)
SB431542(水合物)
A. Adebowale et al. (Nov 2025)
Molecular Neurodegeneration Advances 1 1
Adoptive NK cell transfer confers neuroprotection by attenuating neuroinflammation and alpha-synuclein pathology in a mouse model of synucleinopathy
Background: Natural killer (NK) cells are key effector lymphoid cells involved in both innate and adaptive immunity and are capable of clearing abnormally aggregated α-synuclein (αSyn). In preclinical Parkinson’s disease (PD) models,NK cell depletion worsens motor deficits and increases insoluble αSyn accumulation,suggesting a neuroprotective role. However,the therapeutic potential of NK cell transfer in modulating αSyn pathology and neurodegeneration remains unexplored. Methods: To assess the efficacy of NK cell therapy,we administered biweekly systemic injections of untouched NK cells isolated from B6C3H donor mice into 2-month-old presymptomatic homozygous M83 transgenic mice injected with human αSyn preformed fibrils. Neurological function was assessed via clasping behavior and clinical scoring. αSyn pathology and dopaminergic neurodegeneration were evaluated via immunohistochemistry. CyTOF-based immune profiling and multiplex ELISA were performed to characterize central and peripheral immune responses. Results: Adoptive NK cell transfers improved motor function and reduced αSyn pathology in a region- and dose-dependent manner,with significant reductions in phosphorylated-αSyn inclusions and tyrosine hydroxylase-positive neuronal loss in the substantia nigra. NK cell transfer modulated the CNS immune landscape by reducing CD11b+CD45high and MHCII+ activated microglial,CD4⁺ T cells,and neutrophil infiltration,while promoting CD19+ B and CD8+ T cells. Similar immunomodulatory effects were observed in the periphery,including restoration of follicular B cells and reduced neutrophil frequencies. Mechanistically,αSyn exposure downregulated activating NK ligands and upregulated inhibitory receptor ligand mQa1b,along with p21 induction in microglia,suggesting a senescence-associated,immune-evasive phenotype that may contribute to reduced therapeutic efficacy at later disease stages. Conclusions: Our study provides direct evidence of NK cells exerting neuroprotective and immunomodulatory effects in a preclinical model of synucleinopathy. These findings support NK cell transfer as a novel therapeutic strategy for PD and related neurodegenerative disorders.
View Publication
产品类型:
产品号#:
19855
19855RF
产品名:
EasySep™小鼠NK细胞分选试剂盒
RoboSep™ 小鼠NK细胞分选试剂盒
Gerson SL et al. (SEP 1996)
Blood 88 5 1649--55
Human CD34+ hematopoietic progenitors have low, cytokine-unresponsive O6-alkylguanine-DNA alkyltransferase and are sensitive to O6-benzylguanine plus BCNU.
Human bone marrow (BM) cells contain low levels of the DNA repair protein,O6-alkylguanine-DNA alkyltransferase,which may explain their susceptibility to nitrosourea-induced cytotoxicity and the development of secondary leukemia after nitrosourea treatment. Isolated CD34+ myeloid progenitors were also found to have low levels of alkyltransferase activity. The level of alkyltransferase in CD34+ cells or in mononuclear BM cells did not increase after incubation with granulocyte-macrophage colony-stimulating factor,interleukin-3,stem cell factor,the combination,or 5637 conditioned medium. BCNU sensitivity remained unchanged as well. In addition,O6-benzylguanine depleted alkyltransferase activity in BM cells at concentrations as low as 1.5 mumol/L after a 1-hour exposure. O6-benzylguanine pretreatment markedly sensitized hematopoietic progenitor colony-forming cells to BCNU,resulting in a reduction in the dose of drug (termed the dose-modification factor) required to inhibit 50% of the colony formation (IC50) of threefold to fivefold. Since,unlike many other cell types,proliferating early (CD34+) hematopoietic precursors do not induce alkyltransferase,myelosuppression may be the dose-limiting toxicity of the combination of O6-benzylguanine plus BCNU in clinical trials.
View Publication
产品类型:
产品号#:
73762
产品名:
O6 -苄基鸟嘌呤(Benzylguanine)
Kwant-Mitchell A et al. (OCT 2009)
Journal of virology 83 20 10664--76
Mucosal innate and adaptive immune responses against herpes simplex virus type 2 in a humanized mouse model.
Genital herpes,caused by herpes simplex virus type 2 (HSV-2),is one of the most prevalent sexually transmitted diseases worldwide and a risk factor for acquiring human immunodeficiency virus. Although many vaccine candidates have shown promising results in animal models,they have failed to be effective in human trials. In this study,a humanized mouse strain was evaluated as a potential preclinical model for studying human immune responses to HSV-2 infection and vaccination. Immunodeficient mouse strains were examined for their abilities to develop human innate and adaptive immune cells after transplantation of human umbilical cord stem cells. A RAG2(-/-) gammac(-/-) mouse strain with a BALB/c background was chosen as the most appropriate model and was then examined for its ability to mount innate and adaptive immune responses to intravaginal HSV-2 infection and immunization. After primary infection,human cells in the lymph nodes were able to generate a protective innate immune response and produce gamma interferon (IFN-gamma). After intravaginal immunization and infection,human T cells and NK cells were found in the genital tract and iliac lymph nodes. In addition,human T cells in the spleen,lymph nodes,and vaginal tract were able to respond to stimulation with HSV-2 antigens by replicating and producing IFN-gamma. Human B cells were also able to produce HSV-2-specific immunoglobulin G. These adaptive responses were also shown to be protective and reduce local viral replication in the genital tract. This approach provides a means for studying human immune responses in vivo using a small-animal model and may become an important preclinical tool.
View Publication
产品类型:
产品号#:
07806
07906
产品名:
HetaSep™
HetaSep™
Smith Sa et al. (MAR 2012)
Journal of Virology 86 5 2665--75
Persistence of circulating memory B cell clones with potential for Dengue virus disease enhancement for decades following infection
Symptomatic dengue virus infection ranges in disease severity from an influenza-like illness to life-threatening shock. One model of the mechanism underlying severe disease proposes that weakly neutralizing,dengue serotype cross-reactive antibodies induced during a primary infection facilitate virus entry into Fc receptor-bearing cells during a subsequent secondary infection,increasing viral replication and the release of cytokines and vasoactive mediators,culminating in shock. This process has been termed antibody-dependent enhancement of infection and has significantly hindered vaccine development. Much of our understanding of this process has come from studies using mouse monoclonal antibodies (MAbs); however,antibody responses in mice typically exhibit less complexity than those in humans. A better understanding of the humoral immune response to natural dengue virus infection in humans is sorely needed. Using a high-efficiency human hybridoma technology,we isolated 37 hybridomas secreting human MAbs to dengue viruses from 12 subjects years or even decades following primary or secondary infection. The majority of the human antibodies recovered were broadly cross-reactive,directed against either envelope or premembrane proteins,and capable of enhancement of infection in vitro; few exhibited serotype-specific binding or potent neutralizing activity. Memory B cells encoding enhancing antibodies predominated in the circulation,even two or more decades following infection. Mapping the epitopes and activity of naturally occurring dengue antibodies should prove valuable in determining whether the enhancing and neutralizing activity of antibodies can be separated. Such principles could be used in the rational design of vaccines that enhance the induction of neutralizing antibodies,while lowering the risk of dengue shock syndrome.
View Publication