A. M\'endez-Mancilla et al. (feb 2022)
Cell chemical biology 29 2 321--327.e4
Chemically modified guide RNAs enhance CRISPR-Cas13 knockdown in human cells.
RNA-targeting CRISPR-Cas13 proteins have recently emerged as a powerful platform to modulate gene expression outcomes. However,protein and CRISPR RNA (crRNA) delivery in human cells can be challenging with rapid crRNA degradation yielding transient knockdown. Here we compare several chemical RNA modifications at different positions to identify synthetic crRNAs that improve RNA targeting efficiency and half-life in human cells. We show that co-delivery of modified crRNAs and recombinant Cas13 enzyme in ribonucleoprotein (RNP) complexes can alter gene expression in primary CD4+ and CD8+ T cells. This system represents a robust and efficient method to modulate transcripts without genetic manipulation.
View Publication
产品类型:
产品号#:
07801
17853
17952
产品名:
EasySep™人CD8正选试剂盒 II
EasySep™人CD4+ T细胞分选试剂盒
Y. Ishibashi et al. (Oct 2024)
Addiction Biology 29 10
Development of an evaluation method for addictive compounds based on electrical activity of human iPS cell‐derived dopaminergic neurons using microelectrode array
Addiction is known to occur through the consumption of substances such as pharmaceuticals,illicit drugs,food,alcohol and tobacco. These addictions can be viewed as drug addiction,resulting from the ingestion of chemical substances contained in them. Multiple neural networks,including the reward system,anti‐reward/stress system and central immune system in the brain,are believed to be involved in the onset of drug addiction. Although various compound evaluations using microelectrode array (MEA) as an in vitro testing methods to evaluate neural activities have been conducted,methods for assessing addiction have not been established. In this study,we aimed to develop an in vitro method for assessing the addiction of compounds,as an alternative to animal experiments,using human iPS cell‐derived dopaminergic neurons with MEA measurements. MEA data before and after chronic exposure revealed specific changes in addictive compounds compared to non‐addictive compounds,demonstrating the ability to estimate addiction of compound. Additionally,conducting gene expression analysis on cultured samples after the tests revealed changes in the expression levels of various receptors (nicotine,dopamine and GABA) due to chronic administration of addictive compounds,suggesting the potential interpretation of these expression changes as addiction‐like responses in MEA measurements. The addiction assessment method using MEA measurements in human iPS cell‐derived dopaminergic neurons conducted in this study proves effective in evaluating addiction of compounds on human neural networks.
View Publication
产品类型:
产品号#:
05711
05790
100-1281
产品名:
NeuroCult™ SM1 神经添加物
BrainPhys™神经元培养基
NeuroCult™ SM1 神经添加物
Verfaillie CM (OCT 1993)
Blood 82 7 2045--53
Soluble factor(s) produced by human bone marrow stroma increase cytokine-induced proliferation and maturation of primitive hematopoietic progenitors while preventing their terminal differentiation.
We have recently shown that conservation and differentiation of primitive human hematopoietic progenitors in in vitro long-term bone marrow cultures (LTBMC) occurs to a greater extent when hematopoietic cells are grown separated from the stromal layer than when grown in direct contact with the stroma. This finding suggests that hematopoiesis may depend mainly on soluble factors produced by the stroma. To define these soluble factors,we examine here whether a combination of defined early-acting cytokines can replace soluble stroma-derived biologic activities that induce conservation and differentiation of primitive progenitors. Normal human Lineage-/CD34+/HLA-DR- cells (DR-) were cultured either in the absence of a stromal layer (stroma-free") or in a culture system in which DR- cells were separated from the stromal layer by a microporous membrane ("stroma-noncontact"). Both culture systems were supplemented three times per week with or without cytokines. These studies show that culture of DR- cells for 5 weeks in a "stroma-free" culture supplemented with a combination of four early acting cytokines (Interleukin-3 [IL-3]�
View Publication
Martí et al. (OCT 2014)
Blood 124 15 2411--20
Human blood BDCA-1 dendritic cells differentiate into Langerhans-like cells with thymic stromal lymphopoietin and TGF-β.
The ontogeny of human Langerhans cells (LCs) remains poorly characterized,in particular the nature of LC precursors and the factors that may drive LC differentiation. Here we report that thymic stromal lymphopoietin (TSLP),a keratinocyte-derived cytokine involved in epithelial inflammation,cooperates with transforming growth factor (TGF)-β for the generation of LCs. We show that primary human blood BDCA-1(+),but not BDCA-3(+),dendritic cells (DCs) stimulated with TSLP and TGF-β harbor a typical CD1a(+)Langerin(+) LC phenotype. Electron microscopy established the presence of Birbeck granules,an intracellular organelle specific to LCs. LC differentiation was not observed from tonsil BDCA-1(+) and BDCA-3(+) subsets. TSLP + TGF-β LCs had a mature phenotype with high surface levels of CD80,CD86,and CD40. They induced a potent CD4(+) T-helper (Th) cell expansion and differentiation into Th2 cells with increased production of tumor necrosis factor-α and interleukin-6 compared with CD34-derived LCs. Our findings establish a novel LC differentiation pathway from BDCA-1(+) blood DCs with potential implications in epithelial inflammation. Therapeutic targeting of TSLP may interfere with tissue LC repopulation from circulating precursors.
View Publication
产品类型:
产品号#:
19251
19251RF
产品名:
EasySep™人Pan-DC预富集试剂盒
RoboSep™ 人Pan-DC预富集试剂盒含滤芯吸头
Guo G et al. (FEB 2016)
Stem Cell Reports 6 4 437--446
Naive Pluripotent Stem Cells Derived Directly from Isolated Cells of the Human Inner Cell Mass
Conventional generation of stem cells from human blastocysts produces a developmentally advanced,or primed,stage of pluripotency. In vitro resetting to a more naive phenotype has been reported. However,whether the reset culture conditions of selective kinase inhibition can enable capture of naive epiblast cells directly from the embryo has not been determined. Here,we show that in these specific conditions individual inner cell mass cells grow into colonies that may then be expanded over multiple passages while retaining a diploid karyotype and naive properties. The cells express hallmark naive pluripotency factors and additionally display features of mitochondrial respiration,global gene expression,and genome-wide hypomethylation distinct from primed cells. They transition through primed pluripotency into somatic lineage differentiation. Collectively these attributes suggest classification as human naive embryonic stem cells. Human counterparts of canonical mouse embryonic stem cells would argue for conservation in the phased progression of pluripotency in mammals.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
05940
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Qu X et al. (OCT 2013)
Biochemical and Biophysical Research Communications 439 4 552--558
Differentiation of reprogrammed human adipose mesenchymal stem cells toward neural cells with defined transcription factors
Somatic cell reprogramming may become a powerful approach to generate specific human cell types for cell-fate determination studies and potential transplantation therapies of neurological diseases. Here we report a reprogramming methodology with which human adipose stem cells (hADSCs) can be differentiated into neural cells. After being reprogrammed with polycistronic plasmid carrying defined factor OCT3/4,SOX2,KLF4 and c-MYC,and further treated with neural induce medium,the hADSCs switched to differentiate toward neural cell lineages. The generated cells had normal karyotypes and exogenous vector sequences were not inserted in the genomes. Therefore,this cell lineage conversion methodology bypasses the risk of mutation and gene instability,and provides a novel strategy to obtain patient-specific neural cells for basic research and therapeutic application.
View Publication
产品类型:
产品号#:
05711
产品名:
NeuroCult™ SM1 神经添加物
O. V. Halaidych et al. (MAY 2018)
Stem cell reports 10 5 1642--1656
Inflammatory Responses and Barrier Function of Endothelial Cells Derived from Human Induced Pluripotent Stem Cells.
Several studies have reported endothelial cell (EC) derivation from human induced pluripotent stem cells (hiPSCs). However,few have explored their functional properties in depth with respect to line-to-line and batch-to-batch variability and how they relate to primary ECs. We therefore carried out accurate characterization of hiPSC-derived ECs (hiPSC-ECs) from multiple (non-integrating) hiPSC lines and compared them with primary ECs in various functional assays,which included barrier function using real-time impedance spectroscopy with an integrated assay of electric wound healing,endothelia-leukocyte interaction under physiological flow to mimic inflammation and angiogenic responses in in vitro and in vivo assays. Overall,we found many similarities but also some important differences between hiPSC-derived and primary ECs. Assessment of vasculogenic responses in vivo showed little difference between primary ECs and hiPSC-ECs with regard to functional blood vessel formation,which may be important in future regenerative medicine applications requiring vascularization.
View Publication
产品类型:
产品号#:
07933
07953
07949
07930
07931
07940
07955
07959
07952
85850
85857
85870
85875
产品名:
CryoStor®CS5
CryoStor®CS5
CryoStor®CS5
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
mTeSR™1
mTeSR™1
Lai W-H et al. (DEC 2010)
Cellular reprogramming 12 6 641--653
ROCK inhibition facilitates the generation of human-induced pluripotent stem cells in a defined, feeder-, and serum-free system.
Human-induced pluripotent stem cells (iPSCs) generated from human adult somatic cells through reprogramming hold great promises for future regenerative medicine. However,exposure of human iPSCs to animal feeder and serum in the process of their generation and maintenance imposes risk of transmitting animal pathogens to human subjects,thus hindering the potential therapeutic applications. Here,we report the successful generation of human iPSCs in a feeder-independent culture system with defined factors. Two stable human iPSC lines were established from primary human dermal fibroblasts of two healthy volunteers. These human iPSCs expressed a panel of pluripotency markers including stage-specific embryonic antigen (SSEA)-4,tumor-rejection antigen (TRA)-1-60,TRA-1-81,and alkaline phosphatase,while maintaining normal karyotypes and the exogenous reprogramming factors being silenced. In addition,these human iPSCs can differentiate along lineages representative of the three embryonic germ layers upon formation of embryoid bodies,indicating their pluripotency. Furthermore,subcutaneous transplantation of these cells into immunodeficient mice resulted in teratoma formation in 6 to 8 weeks. Our findings are an important step toward generating patient-specific iPSCs in a more clinically compliant manner by eliminating the need of animal feeder cells and animal serum.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Shahbazi M et al. (JUL 2013)
Journal of the Neurological Sciences 330 1–2 85--93
Inhibitory effects of neural stem cells derived from human embryonic stem cells on differentiation and function of monocyte-derived dendritic cells
Neural stem cells (NSCs) possess immunosuppressive characteristics,but effects of NSCs on human dendritic cells (DCs),the most important antigen presenting cells,are less well studied. We used an in vitro approach to evaluate the effects of human NSCs on differentiation of human blood CD14+ monocytes into DCs. NSCs derived from H1 human embryonic stem cells (hESC-NSCs) and human ReNcell NSC line,as well as human bone marrow derived mesenchymal stem cells (MSCs),were tested. We observed that in response to treatment with interleukin-4 and granulocyte macrophage colony-stimulating factor CD14+ monocytes co-cultured with NSCs were able to down-regulate CD14 and up-regulate the differentiation marker CD1a,whereas MSC co-culture strongly inhibited CD1a expression and supported prolonged expression of CD14. A similar difference between NSCs and MSCs was noted when lipopolysaccharides were included to induce maturation of monocyte-derived DCs. However,when effects on the function of derived DCs were investigated,NSCs suppressed the elevation of the DC maturation marker CD83,although not the up-regulation of costimulatory molecules CD80,CD86 and CD40,and impaired the functional capacity of the derived DCs to stimulate alloreactive T cells. We did not observe any obvious difference between hESC-NSCs and ReNcell NSCs in inhibiting DC maturation and function. Our data suggest that although human NSCs are less effective than human MSCs in suppressing monocyte differentiation into DCs,these stem cells can still affect the function of DCs,ultimately regulating specific immune responses.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
70025
70025.1
70025.2
70025.3
70047
70047.1
70047.2
70048
70048.1
70048.2
产品名:
mTeSR™1
mTeSR™1
冻存的人外周血单个核细胞
冻存的人外周血单个核细胞
冻存的人外周血单个核细胞
冻存的人外周血单个核细胞
Selekman JA et al. (DEC 2013)
Tissue engineering. Part C,Methods 19 12 949--60
Efficient generation of functional epithelial and epidermal cells from human pluripotent stem cells under defined conditions.
Human pluripotent stem cells (hPSCs) have an unparalleled potential to generate limitless quantities of any somatic cell type. However,current methods for producing populations of various somatic cell types from hPSCs are generally not standardized and typically incorporate undefined cell culture components often resulting in variable differentiation efficiencies and poor reproducibility. To address this,we have developed a defined approach for generating epithelial progenitor and epidermal cells from hPSCs. In doing so,we have identified an optimal starting cell density to maximize yield and maintain high purity of K18+/p63+ simple epithelial progenitors. In addition,we have shown that the use of synthetic,defined substrates in lieu of Matrigel and gelatin can successfully facilitate efficient epithelial differentiation,maintaining a high (backslashtextgreater75%) purity of K14+/p63+ keratinocyte progenitor cells and at a two to threefold higher yield than a previously reported undefined differentiation method. These K14+/p63+ cells also exhibited a higher expansion potential compared to cells generated using an undefined differentiation protocol and were able to terminally differentiate and recapitulate an epidermal tissue architecture in vitro. In summary,we have demonstrated the production of populations of functional epithelial and epidermal cells from multiple hPSC lines using a new,completely defined differentiation strategy.
View Publication