A role for thrombopoietin in hemangioblast development.
Vascular endothelial growth factor (VEGF) and stem cell factor (SCF) act as growth factors for the hemangioblast,an embryonic progenitor of the hematopoietic and endothelial lineages. Because thrombopoietin (TPO) and its receptor,c-Mpl,regulate primitive hematopoietic populations,including bone marrow hematopoietic stem cells,we investigated whether TPO acts on the hemangioblasts that derive from differentiation of embryonic stem cells in vitro. Reverse transcriptase polymerase chain reaction analysis detected expression of c-Mpl beginning on day 3 of embryoid body differentiation when the hemangioblast first arises. In assays of the hemangioblast colony-forming cell (BL-CFC),TPO alone supported BL-CFC formation and nearly doubled the number of BL-CFC when added together with VEGF and SCF. When replated under the appropriate conditions,TPO-stimulated BL-CFC gave rise to secondary hematopoietic colonies,as well as endothelial cells,confirming their nature as hemangioblasts. Addition of a neutralizing anti-VEGF antibody did not block TPO enhancement of BL-CFC formation,suggesting that TPO acts independently of VEGF. These results establish that Mpl signaling plays a role in the earliest stages of hematopoietic development and that TPO represents a third growth factor influencing hemangioblast formation.
View Publication
产品类型:
产品号#:
03434
03444
产品名:
MethoCult™GF M3434
MethoCult™GF M3434
Ciceri P et al. ( 2014)
Nature chemical biology 10 4 305--312
Dual kinase-bromodomain inhibitors for rationally designed polypharmacology.
Concomitant inhibition of multiple cancer-driving kinases is an established strategy to improve the durability of clinical responses to targeted therapies. The difficulty of discovering kinase inhibitors with an appropriate multitarget profile has,however,necessitated the application of combination therapies,which can pose major clinical development challenges. Epigenetic reader domains of the bromodomain family have recently emerged as new targets for cancer therapy. Here we report that several clinical kinase inhibitors also inhibit bromodomains with therapeutically relevant potencies and are best classified as dual kinase-bromodomain inhibitors. Nanomolar activity on BRD4 by BI-2536 and TG-101348,which are clinical PLK1 and JAK2-FLT3 kinase inhibitors,respectively,is particularly noteworthy as these combinations of activities on independent oncogenic pathways exemplify a new strategy for rational single-agent polypharmacological targeting. Furthermore,structure-activity relationships and co-crystal structures identify design features that enable a general platform for the rational design of dual kinase-bromodomain inhibitors.
View Publication
产品类型:
产品号#:
73472
73474
产品名:
TG101348
TG101348
X. Chen et al. (Apr 2024)
Nature 628 8009
Antisense oligonucleotide therapeutic approach for Timothy syndrome
Timothy syndrome (TS) is a severe,multisystem disorder characterized by autism,epilepsy,long-QT syndrome and other neuropsychiatric conditions 1 . TS type 1 (TS1) is caused by a gain-of-function variant in the alternatively spliced and developmentally enriched CACNA1C exon 8A,as opposed to its counterpart exon 8. We previously uncovered several phenotypes in neurons derived from patients with TS1,including delayed channel inactivation,prolonged depolarization-induced calcium rise,impaired interneuron migration,activity-dependent dendrite retraction and an unanticipated persistent expression of exon 8A 2 – 6 . We reasoned that switching CACNA1C exon utilization from 8A to 8 would represent a potential therapeutic strategy. Here we developed antisense oligonucleotides (ASOs) to effectively decrease the inclusion of exon 8A in human cells both in vitro and,following transplantation,in vivo. We discovered that the ASO-mediated switch from exon 8A to 8 robustly rescued defects in patient-derived cortical organoids and migration in forebrain assembloids. Leveraging a transplantation platform previously developed 7,we found that a single intrathecal ASO administration rescued calcium changes and in vivo dendrite retraction of patient neurons,suggesting that suppression of CACNA1C exon 8A expression is a potential treatment for TS1. Broadly,these experiments illustrate how a multilevel,in vivo and in vitro stem cell model-based approach can identify strategies to reverse disease-relevant neural pathophysiology. Subject terms: Autism spectrum disorders,Development of the nervous system
View Publication
产品类型:
产品号#:
34811
34815
34821
34825
34850
34860
产品名:
AggreWell™ 800 24孔板,1个
AggreWell™ 800 24孔板,5个
AggreWell™ 800 6孔板,1个
AggreWell™ 800 6孔板,5个
AggreWell™ 800 24孔板启动套装
AggreWell™ 800 6孔板启动套装
Murphy SV et al. (JAN 2013)
Journal of biomedical materials research. Part A 101 1 272--84
Evaluation of hydrogels for bio-printing applications.
In the United States alone,there are approximately 500,000 burn injuries that require medical treatment every year. Limitations of current treatments necessitate the development of new methods that can be applied quicker,result in faster wound regeneration,and yield skin that is cosmetically similar to undamaged skin. The development of new hydrogel biomaterials and bioprinting deposition technologies has provided a platform to address this need. Herein we evaluated characteristics of twelve hydrogels to determine their suitability for bioprinting applications. We chose hydrogels that are either commercially available,or are commonly used for research purposes. We evaluated specific hydrogel properties relevant to bioprinting applications,specifically; gelation time,swelling or contraction,stability,biocompatibility and printability. Further,we described regulatory,commercial and financial aspects of each of the hydrogels. While many of the hydrogels screened may exhibit characteristics suitable for other applications,UV-crosslinked Extracel,a hyaluronic acid-based hydrogel,had many of the desired properties for our bioprinting application. Taken together with commercial availability,shelf life,potential for regulatory approval and ease of use,these materials hold the potential to be further developed into fast and effective wound healing treatments.
View Publication
X. Wang et al. (jun 2022)
Journal of experimental & clinical cancer research : CR 41 1 210
Expanding anti-CD38 immunotherapy for lymphoid malignancies.
BACKGROUND Lymphoid neoplasms,including multiple myeloma (MM),non-Hodgkin lymphoma (NHL),and NK/T cell neoplasms,are a major cause of blood cancer morbidity and mortality. CD38 (cyclic ADP ribose hydrolase) is a transmembrane glycoprotein expressed on the surface of plasma cells and MM cells. The high expression of CD38 across MM and other lymphoid malignancies and its restricted expression in normal tissues make CD38 an attractive target for immunotherapy. CD38-targeting antibodies,like daratumumab,have been approved for the treatment of MM and tested against lymphoma and leukemia in multiple clinical trials. METHODS We generated chimeric antigen receptor (CAR) T cells targeting CD38 and tested its cytotoxicity against multiple CD38high and CD38low lymphoid cancer cells. We evaluated the synergistic effects of all-trans retinoic acid (ATRA) and CAR T cells or daratumumab against cancer cells and xenograft tumors. RESULTS CD38-CAR T cells dramatically inhibited the growth of CD38high MM,mantle cell lymphoma (MCL),Waldenstrom's macroglobulinemia (WM),T-cell acute lymphoblastic leukemia (T-ALL),and NK/T-cell lymphoma (NKTCL) in vitro and in mouse xenografts. ATRA elevated CD38 expression in multiple CD38low cancer cells and enhanced the anti-tumor activity of daratumumab and CD38-CAR T cells in xenograft tumors. CONCLUSIONS These findings may expand anti-CD38 immunotherapy to a broad spectrum of lymphoid malignancies and call for the incorporation of ATRA into daratumumab or other anti-CD38 immunological agents for cancer therapy.
View Publication
产品类型:
产品号#:
17951
100-0695
17951RF
产品名:
EasySep™人T细胞分选试剂盒
EasySep™人T细胞分选试剂盒
RoboSep™ 人T细胞分选试剂盒
Rhee C et al. (FEB 2017)
Developmental biology 422 2 83--91
ARID3A is required for mammalian placenta development.
Previous studies in the mouse indicated that ARID3A plays a critical role in the first cell fate decision required for generation of trophectoderm (TE). Here,we demonstrate that ARID3A is widely expressed during mouse and human placentation and essential for early embryonic viability. ARID3A localizes to trophoblast giant cells and other trophoblast-derived cell subtypes in the junctional and labyrinth zones of the placenta. Conventional Arid3a knockout embryos suffer restricted intrauterine growth with severe defects in placental structural organization. Arid3a null placentas show aberrant expression of subtype-specific markers as well as significant alteration in cytokines,chemokines and inflammatory response-related genes,including previously established markers of human placentation disorders. BMP4-mediated induction of trophoblast stem (TS)-like cells from human induced pluripotent stem cells results in ARID3A up-regulation and cytoplasmic to nuclear translocation. Overexpression of ARID3A in BMP4-mediated TS-like cells up-regulates TE markers,whereas pluripotency markers are down-regulated. Our results reveal an essential,conserved function for ARID3A in mammalian placental development through regulation of both intrinsic and extrinsic developmental programs.
View Publication
Y. Huang et al. (May 2025)
International Journal of Molecular Sciences 26 11
Elexacaftor/Tezacaftor/Ivacaftor Supports Treatment for CF with ΔI1023-V1024-CFTR
Cystic Fibrosis (CF) is a common genetic disease in the United States,resulting from mutations in the Cystic Fibrosis transmembrane conductance regulator (cftr) gene. CFTR modulators,particularly Elexacaftor/Tezacaftor/Ivacaftor (ETI),have significantly improved clinical outcomes for patients with CF. However,many CFTR mutations are not eligible for CFTR modulator therapy due to their rarity. In this study,we report that a patient carrying rare complex CFTR mutations,c.1680-877G>T and c.3067_3072delATAGTG,showed positive clinical outcomes after ETI treatment. We demonstrate that ETI was able to increase the expression of CFTR harboring c.3067_3072delATAGTG in a heterologous system. Importantly,patient-derived nasal epithelial cells in an air–liquid interface (ALI) culture showed improved CFTR function following ETI treatment. These findings supported the initiation of ETI with the patient. Retrospective studies have suggested that the patient has shown small but steady improvement over the past two years in several clinical metrics,including lung function,body mass index (BMI),and sweat chloride levels. Our studies suggest that ETI could be beneficial for patients carrying c.3067_3072delATAGTG.
View Publication
产品类型:
产品号#:
05001
05021
05022
产品名:
PneumaCult™-ALI 培养基
PneumaCult™-ALI 培养基含12 mm Transwell®插件
PneumaCult™-ALI 培养基含6.5 mm Transwell®插件
J. W. Fleming et al. (Jan 2025)
Current Research in Toxicology 8
An automated platform for simultaneous, longitudinal analysis of engineered neuromuscular tissues for applications in neurotoxin potency testing
Animal models of the neuromuscular junction (NMJ) have been widely studied but exhibit critical differences from human biology limiting utility in drug and disease modelling. Challenges with scarcity,scalability,throughput,and ethical considerations further limit the suitability of animal models for preclinical screening. Engineered models have emerged as alternatives for studying NMJ functionality in response to genetic and/or pharmacological challenge. However,these models have faced challenges associated with their poorly scalable creation,sourcing suitable cells,and the extraction of reliable,quantifiable metrics. We present a turnkey iPSC-based model of the NMJ employing channelrhodopsin-2 expression within the motor neuron (MN) population driving muscle contraction in response to blue light. MNs co-cultured with engineered skeletal muscle tissues produced twitch forces of 34.7 ± 22.7 µN in response to blue light,with a response fidelity > 92 %. Histological analysis revealed characteristic punctate acetylcholine receptor staining co-localized with the presynaptic marker synaptic vesicle protein-2. Dose-response studies using botulinum neurotoxin showed loss of function in a dose- and time-dependent manner (EC50 - 0.11 ± 0.015 µg). Variability of the EC50 values between 2 different iPSC differentiations of both cell types and 2 users was less than 2 %. Further testing with the acute neurotoxins acetylcholine mustard and d-tubocurarine validated the biological relevance of the postsynaptic machinery of the model. This model marks a meaningful progression of 3D engineered models of the NMJ,providing engineered tissues at a throughput relevant to potency and screening applications with an abundant iPSC cell source and standardized hardware-software ecosystem allowing technology transfer across laboratories.
View Publication
产品类型:
产品号#:
05854
05855
产品名:
mFreSR™
mFreSR™
Storms RW et al. (JUL 2005)
Blood 106 1 95--102
Distinct hematopoietic progenitor compartments are delineated by the expression of aldehyde dehydrogenase and CD34.
A broad range of hematopoietic stem cells and progenitors reside within a fraction of umbilical cord blood (UCB) that exhibits low light scatter properties (SSC(lo)) and high expression of aldehyde dehydrogenase (ALDH(br)). Many SSC(lo) ALDH(br) cells coexpress CD34; however,other cells express either ALDH or CD34. To investigate the developmental potential of these cell subsets,purified ALDH(br) CD34+,ALDH(neg) CD34+,and ALDH(br) CD34(neg) UCB cells were characterized within a variety of in vivo and in vitro assays. Primitive progenitors capable of multilineage development were monitored in long- and short-term repopulation assays performed on nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice,and in primary and secondary long-term culture assays. These progenitors were highly enriched within the ALDH(br) CD34+ fraction. This cell fraction also enriched short-term myeloid progenitors that were detected in vitro. By comparison,ALDH(neg) CD34+ cells contained few primitive progenitors and had diminished short-term myeloid potential but exhibited enhanced short-term natural killer (NK) cell development in vitro. The ALDH(br) CD34(neg) cells were not efficiently supported by any of the assays used. These studies suggested that in particular the expression of ALDH delineated distinct CD34+ stem cell and progenitor compartments. The differential expression of ALDH may provide a means to explore normal and malignant processes associated with myeloid and lymphoid development.
View Publication
产品类型:
产品号#:
01700
01705
01701
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
(Jul 2025)
Scientific Reports 15 4
Preclinical development of an immunoassay for the detection of TREM2: a new biomarker for Alzheimer’s disease
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid-β (Aβ) plaques and neurofibrillary tangles composed of hyperphosphorylated tau protein. The combination of biomarkers is crucial for AD diagnosis. The triggering receptor expressed on myeloid cells 2 (TREM2),a receptor expressed on microglia,is important in AD pathogenesis. Impairment of TREM2 function aggravates the toxic effects of amyloid plaques,and its activation has been shown to reduce Aβ burden and memory deficits. Increased levels of soluble TREM2 (sTREM2) in blood and cerebrospinal fluid is associated with AD. Therefore,TREM2 could serve as a non-invasive biomarker for AD. In this study,we developed a preclinical immunoassay to detect TREM2 for AD diagnosis. Highly sensitive and specific TREM2 antibodies were produced using the hybridoma technique. The three optimized immunoassays exhibited lower limit of quantitation (LLOQ) of 0.474,0.807,and 0.415 ng/mL,respectively. These preclinical immunoassays showed high sensitivity and specificity. The sandwich enzyme-linked immunosorbent assay (ELISA) could potentially be used for AD diagnosis.
View Publication