Chen YS et al. (FEB 2012)
Stem cells translational medicine 1 2 83--95
Small molecule mesengenic induction of human induced pluripotent stem cells to generate mesenchymal stem/stromal cells.
The translational potential of mesenchymal stem/stromal cells (MSCs) is limited by their rarity in somatic organs,heterogeneity,and need for harvest by invasive procedures. Induced pluripotent stem cells (iPSCs) could be an advantageous source of MSCs,but attempts to derive MSCs from pluripotent cells have required cumbersome or untranslatable techniques,such as coculture,physical manipulation,sorting,or viral transduction. We devised a single-step method to direct mesengenic differentiation of human embryonic stem cells (ESCs) and iPSCs using a small molecule inhibitor. First,epithelial-like monolayer cells were generated by culturing ESCs/iPSCs in serum-free medium containing the transforming growth factor-β pathway inhibitor SB431542. After 10 days,iPSCs showed upregulation of mesodermal genes (MSX2,NCAM,HOXA2) and downregulation of pluripotency genes (OCT4,LEFTY1/2). Differentiation was then completed by transferring cells into conventional MSC medium. The resultant development of MSC-like morphology was associated with increased expression of genes,reflecting epithelial-to-mesenchymal transition. Both ESC- and iPSC-derived MSCs exhibited a typical MSC immunophenotype,expressed high levels of vimentin and N-cadherin,and lacked expression of pluripotency markers at the protein level. Robust osteogenic and chondrogenic differentiation was induced in vitro in ES-MSCs and iPS-MSCs,whereas adipogenic differentiation was limited,as reported for primitive fetal MSCs and ES-MSCs derived by other methods. We conclude that treatment with SB431542 in two-dimensional cultures followed by culture-induced epithelial-to-mesenchymal transition leads to rapid and uniform MSC conversion of human pluripotent cells without the need for embryoid body formation or feeder cell coculture,providing a robust,clinically applicable,and efficient system for generating MSCs from human iPSCs.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Kovats S et al. (NOV 2016)
Clinical and experimental immunology 186 2 214--226
West Nile virus-infected human dendritic cells fail to fully activate invariant natural killer T cells.
West Nile virus (WNV) infection is a mosquito-borne zoonosis with increasing prevalence in the United States. WNV infection begins in the skin,and the virus replicates initially in keratinocytes and dendritic cells (DCs). In the skin and cutaneous lymph nodes,infected DCs are likely to interact with invariant natural killer T cells (iNKTs). Bidirectional interactions between DCs and iNKTs amplify the innate immune response to viral infections,thus controlling viral load and regulating adaptive immunity. iNKTs are stimulated by CD1d-bound lipid antigens or activated indirectly by inflammatory cytokines. We exposed human monocyte-derived DCs to WNV Kunjin and determined their ability to activate isolated blood iNKTs. DCs became infected as judged by synthesis of viral mRNA and Envelope and NS-1 proteins,but did not undergo significant apoptosis. Infected DCs up-regulated the co-stimulatory molecules CD86 and CD40,but showed decreased expression of CD1d. WNV infection induced DC secretion of type I interferon (IFN),but no or minimal interleukin (IL)-12,IL-23,IL-18 or IL-10. Unexpectedly,we found that the WNV-infected DCs stimulated human iNKTs to up-regulate CD69 and produce low amounts of IL-10,but not proinflammatory cytokines such as IFN-γ or tumour necrosis factor (TNF)-α. Both CD1d and IFNAR blockade partially abrogated this iNKT response,suggesting involvement of a T cell receptor (TCR)-CD1d interaction and type I interferon receptor (IFNAR) signalling. Thus,WNV infection interferes with DC-iNKT interactions by preventing the production of proinflammatory cytokines. iNKTs may be a source of IL-10 observed in human flavivirus infections and initiate an anti-inflammatory innate response that limits adaptive immunity and immune pathology upon WNV infection.
View Publication
产品类型:
产品号#:
19059
19059RF
产品名:
EasySep™人单核细胞富集试剂盒
RoboSep™ 人单核细胞富集试剂盒含滤芯吸头
N. Paiboon et al. ( 2019)
Stem cells international 2019 9748795
Gestational Tissue-Derived Human Mesenchymal Stem Cells Use Distinct Combinations of Bioactive Molecules to Suppress the Proliferation of Human Hepatoblastoma and Colorectal Cancer Cells.
Background Cancer has been considered a serious global health problem and a leading cause of morbidity and mortality worldwide. Despite recent advances in cancer therapy,treatments of advance stage cancers are mostly ineffective resulting in poor survival of patients. Recent evidences suggest that multipotent human mesenchymal stem cells (hMSCs) play important roles in growth and metastasis of several cancers by enhancing their engraftment and inducing tumor neovascularization. However,the effect of hMSCs on cancer cells is still controversial because there are also evidences demonstrating that hMSCs inhibited growth and metastasis of some cancers. Methods In this study,we investigated the effects of bioactive molecules released from bone marrow and gestational tissue-derived hMSCs on the proliferation of various human cancer cells,including C3A,HT29,A549,Saos-2,and U251. We also characterized the hMSC-derived factors that inhibit cancer cell proliferation by protein fractionation and mass spectrometry analysis. Results We herein make a direct comparison and show that the effects of hMSCs on cancer cell proliferation and migration depend on both hMSC sources and cancer cell types and cancer-derived bioactive molecules did not affect the cancer suppressive capacity of hMSCs. Moreover,hMSCs use distinct combination of bioactive molecules to suppress the proliferation of human hepatoblastoma and colorectal cancer cells. Using protein fractionation and mass spectrometry analysis,we have identified several novel hMSC-derived factors that might be able to suppress cancer cell proliferation. Conclusion We believe that the procedure developed in this study could be used to discover other therapeutically useful molecules released by various hMSC sources for a future in vivo study.
View Publication
产品类型:
产品号#:
05445
05448
产品名:
MesenCult™-ACF Plus培养基
MesenCult™-ACF Plus培养试剂盒
Rosenzweig M et al. (APR 2001)
Blood 97 7 1951--9
Induction of cytotoxic T lymphocyte and antibody responses to enhanced green fluorescent protein following transplantation of transduced CD34(+) hematopoietic cells.
Genetic modification of hematopoietic stem cells often results in the expression of foreign proteins in pluripotent progenitor cells and their progeny. However,the potential for products of foreign genes introduced into hematopoietic stem cells to induce host immune responses is not well understood. Gene marking and induction of immune responses to enhanced green fluorescent protein (eGFP) were examined in rhesus macaques that underwent nonmyeloablative irradiation followed by infusions of CD34(+) bone marrow cells transduced with a retroviral vector expressing eGFP. CD34(+) cells were obtained from untreated animals or from animals treated with recombinant human granulocyte colony-stimulating factor (G-CSF) alone or G-CSF and recombinant human stem cell factor. Levels of eGFP-expressing cells detected by flow cytometry peaked at 0.1% to 0.5% of all leukocytes 1 to 4 weeks after transplantation. Proviral DNA was detected in 0% to 17% of bone marrow--derived colony-forming units at periods of 5 to 18 weeks after transplantation. However,5 of 6 animals studied demonstrated a vigorous eGFP-specific cytotoxic T lymphocyte (CTL) response that was associated with a loss of genetically modified cells in peripheral blood,as demonstrated by both flow cytometry and polymerase chain reaction. The eGFP-specific CTL responses were MHC-restricted,mediated by CD8(+) lymphocytes,and directed against multiple epitopes. eGFP-specific CTLs were able to efficiently lyse autologous CD34(+) cells expressing eGFP. Antibody responses to eGFP were detected in 3 of 6 animals. These data document the potential for foreign proteins expressed in CD34(+) hematopoietic cells and their progeny to induce antibody and CTL responses in the setting of a clinically applicable transplantation protocol. (Blood. 2001;97:1951-1959)
View Publication
产品类型:
产品号#:
09600
09650
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
Kim M et al. (JAN 2002)
Clinical cancer research : an official journal of the American Association for Cancer Research 8 1 22--8
The multidrug resistance transporter ABCG2 (breast cancer resistance protein 1) effluxes Hoechst 33342 and is overexpressed in hematopoietic stem cells.
The human ATP-binding cassette superfamily G (White) member 2 (ABCG2) gene and its murine homologue breast cancer resistance protein 1 (Bcrp1) are recently described ATP-binding cassette transporters associated with drug resistance in tumor cell lines,including the MCF-7 cell line,selected for its resistance to mitoxantrone (MCF-7/MitoR). Infection of MCF-7 cells with the retroviral vector containing ABCG2 cDNA (G1-ABCG2) resulted in cells (MCF-7/ABCG2) that were resistant to mitoxantrone at levels similar to those observed in MCF-7/MitoR cells. Previous studies have shown that pluripotent hematopoietic stem cells overexpress the multidrug-resistant transport (MDR1) gene and efflux rhodamine,a substrate for the MDR1 transporter. Other studies have identified a primitive hematopoietic stem cell population,or side population (SP) cells,which are identified by their efflux of the fluorescent dye,Hoechst 33342. In an attempt to identify the transport genes responsible for this phenotype,we examined the uptake of Hoechst 33342 into MCF-7,MCF-7/MitoR,and MCF-7 cells infected with a retroviral vector expressing the ABCG2 gene (MCF-7/ABCG2). MCF-7/MitoR cells as well as MCF-7/ABCG2 cells demonstrated lower levels of Hoechst 33342 uptake compared with the parental MCF-7 cells. We also examined the level of the mouse Bcrp1 RNA in SP cells and non-SP cells isolated from mouse hematopoietic cells. Mouse SP cells expressed relatively high levels of Bcrp1 mRNA relative to non-SP cells. These results suggest that Hoechst 33342 is a substrate for the ABCG2 transporter and that ABCG2/Bcrp1 expression may serve as a marker for hematopoietic stem cells in hematopoietic cells.
View Publication
产品类型:
产品号#:
产品名:
Civin CI et al. (JUL 1984)
Journal of immunology (Baltimore,Md. : 1950) 133 1 157--65
Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells.
The anti-My-10 mouse monoclonal antibody was raised against the immature human myeloid cell line KG-1a and was selected for nonreactivity with mature human granulocytes. Anti-My-10 immunoprecipitated a KG-1a cell surface protein with an apparent Mr of approximately 115 kD. We describe the binding of this antibody to human hematopoietic cell types and show that My-10 is expressed specifically on immature normal human marrow cells,including hematopoietic progenitor cells. My-10 is also expressed by leukemic marrow cells from a subpopulation of patients. Thus,this antibody allows the identification and purification of hematopoietic progenitor cells from normal human marrow and the subclassification of leukemia.
View Publication
产品类型:
产品号#:
10413
产品名:
P. K. Mahalingaiah et al. (MAY 2018)
Current protocols in toxicology 76 1 e45
An In Vitro Model of Hematotoxicity: Differentiation of Bone Marrow-Derived Stem/Progenitor Cells into Hematopoietic Lineages and Evaluation of Lineage-Specific Hematotoxicity.
Hematotoxicity is a significant issue for drug safety and can result from direct cytotoxicity toward circulating mature blood cell types as well as targeting of immature blood-forming stem cells/progenitor cells in the bone marrow. In vitro models for understanding and investigating the hematotoxicity potential of new test items/drugs are critical in early preclinical drug development. The traditional method,colony forming unit (CFU) assay,is commonly used and has been validated as a method for hematotoxicity screening. The CFU assay has multiple limitations for its application in investigative work. In this paper,we describe a detailed protocol for a liquid-culture,microplate-based in vitro hematotoxicity assay to evaluate lineage-specific (myeloid,erythroid,and megakaryocytic) hematotoxicity at different stages of differentiation. This assay has multiple advantages over the traditional CFU assay,including being suitable for high-throughput screening and flexible enough to allow inclusion of additional endpoints for mechanistic studies. Therefore,it is an extremely useful tool for scientists in pharmaceutical discovery and development. {\textcopyright} 2018 by John Wiley & Sons,Inc.
View Publication
产品类型:
产品号#:
70002
70002.1
70002.2
70002.3
70002.4
70002.5
产品名:
Campbell CJV et al. (SEP 2010)
Blood 116 9 1433--42
The human stem cell hierarchy is defined by a functional dependence on Mcl-1 for self-renewal capacity.
The molecular basis for the unique proliferative and self-renewal properties that hierarchically distinguish human stem cells from progenitors and terminally differentiated cells remains largely unknown. We report a role for the Bcl-2 family member myeloid cell leukemia-1 (Mcl-1) as an indispensable regulator of self-renewal in human stem cells and show that a functional dependence on Mcl-1 defines the human stem cell hierarchy. In vivo pharmacologic targeting of the Bcl-2 family members in human hematopoietic stem cells (HSCs) and human leukemic stem cells reduced stem cell regenerative and self-renewal function. Subsequent protein expression studies showed that,among the Bcl-2 family members,only Mcl-1 was up-regulated exclusively in the human HSC fraction on in vivo regeneration of hematopoiesis. Short hairpin RNA-knockdown of Mcl-1 in human cord blood cells did not affect survival in the HSC or hematopoietic progenitor cell fractions in vitro but specifically reduced the in vivo self-renewal function of human HSCs. Moreover,knockdown of Mcl-1 in ontogenetically primitive human pluripotent stem cells resulted in almost complete ablation of stem cell self-renewal function. Our findings show that Mcl-1 is an essential regulator of stem cell self-renewal in humans and therefore represents an axis for therapeutic interventions.
View Publication
产品类型:
产品号#:
04434
04444
产品名:
MethoCult™H4434经典
MethoCult™H4434经典
Son M-Y et al. (APR 2014)
Human molecular genetics 23 7 1802--1816
Comparative receptor tyrosine kinase profiling identifies a novel role for AXL in human stem cell pluripotency.
The extensive molecular characterization of human pluripotent stem cells (hPSCs),human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs) is required before they can be applied in the future for personalized medicine and drug discovery. Despite the efforts that have been made with kinome analyses,we still lack in-depth insights into the molecular signatures of receptor tyrosine kinases (RTKs) that are related to pluripotency. Here,we present the first detailed and distinct repertoire of RTK characteristic for hPSC pluripotency by determining both the expression and phosphorylation profiles of RTKs in hESCs and hiPSCs using reverse transcriptase-polymerase chain reaction with degenerate primers that target conserved tyrosine kinase domains and phospho-RTK array,respectively. Among the RTKs tested,the up-regulation of EPHA1,ERBB2,FGFR4 and VEGFR2 and the down-regulation of AXL,EPHA4,PDGFRB and TYRO3 in terms of both their expression and phosphorylation levels were predominantly related to the maintenance of hPSC pluripotency. Notably,the specific inhibition of AXL was significantly advantageous in maintaining undifferentiated hESCs and hiPSCs and for the overall efficiency and kinetics of hiPSC generation. Additionally,a global phosphoproteomic analysis showed that ∼30% of the proteins (293 of 970 phosphoproteins) showed differential phosphorylation upon AXL inhibition in undifferentiated hPSCs,revealing the potential contribution of AXL-mediated phosphorylation dynamics to pluripotency-related signaling networks. Our findings provide a novel molecular signature of AXL in pluripotency control that will complement existing pluripotency-kinome networks.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Lei Y and Schaffer DV (DEC 2013)
Proceedings of the National Academy of Sciences of the United States of America 110 52 E5039----E5048
A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation
Human pluripotent stem cells (hPSCs),including human embryonic stem cells and induced pluripotent stem cells,are promising for numerous biomedical applications,such as cell replacement therapies,tissue and whole-organ engineering,and high-throughput pharmacology and toxicology screening. Each of these applications requires large numbers of cells of high quality; however,the scalable expansion and differentiation of hPSCs,especially for clinical utilization,remains a challenge. We report a simple,defined,efficient,scalable,and good manufacturing practice-compatible 3D culture system for hPSC expansion and differentiation. It employs a thermoresponsive hydrogel that combines easy manipulation and completely defined conditions,free of any human- or animal-derived factors,and entailing only recombinant protein factors. Under an optimized protocol,the 3D system enables long-term,serial expansion of multiple hPSCs lines with a high expansion rate (∼20-fold per 5-d passage,for a 1072-fold expansion over 280 d),yield (∼2.0 × 107 cells per mL of hydrogel),and purity (∼95% Oct4+),even with single-cell inoculation,all of which offer considerable advantages relative to current approaches. Moreover,the system enabled 3D directed differentiation of hPSCs into multiple lineages,including dopaminergic neuron progenitors with a yield of ∼8 × 107 dopaminergic progenitors per mL of hydrogel and ∼80-fold expansion by the end of a 15-d derivation. This versatile system may be useful at numerous scales,from basic biological investigation to clinical development.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
V. Petrova et al. (Jul 2024)
Cellular and Molecular Life Sciences: CMLS 81 1
Identification of novel neuroprotectants against vincristine-induced neurotoxicity in iPSC-derived neurons
Chemotherapy-induced peripheral neuropathy (CIPN) is a disabling side effect of cancer chemotherapy that can often limit treatment options for cancer patients or have life-long neurodegenerative consequences that reduce the patient’s quality of life. CIPN is caused by the detrimental actions of various chemotherapeutic agents on peripheral axons. Currently,there are no approved preventative measures or treatment options for CIPN,highlighting the need for the discovery of novel therapeutics and improving our understanding of disease mechanisms. In this study,we utilized human-induced pluripotent stem cell (hiPSC)-derived motor neurons as a platform to mimic axonal damage after treatment with vincristine,a chemotherapeutic used for the treatment of breast cancers,osteosarcomas,and leukemia. We screened a total of 1902 small molecules for neuroprotective properties in rescuing vincristine-induced axon growth deficits. From our primary screen,we identified 38 hit compounds that were subjected to secondary dose response screens. Six compounds showed favorable pharmacological profiles – AZD7762,A-674563,Blebbistatin,Glesatinib,KW-2449,and Pelitinib,all novel neuroprotectants against vincristine toxicity to neurons. In addition,four of these six compounds also showed efficacy against vincristine-induced growth arrest in human iPSC-derived sensory neurons. In this study,we utilized high-throughput screening of a large library of compounds in a therapeutically relevant assay. We identified several novel compounds that are efficacious in protecting different neuronal subtypes from the toxicity induced by a common chemotherapeutic agent,vincristine which could have therapeutic potential in the clinic. The online version contains supplementary material available at 10.1007/s00018-024-05340-x.
View Publication
产品类型:
产品号#:
100-0483
100-0484
产品名:
Hausser Scientificᵀᴹ 明线血球计数板
ReLeSR™
Kuroki MM et al. ( 2005)
Anticancer Research 25 6A 3733--9
Preparation of human IgG and IgM monoclonal antibodies for MK-1/Ep-CAM by using human immunoglobulin gene-transferred mouse and gene cloning of their variable regions.
For antibody-based therapy of cancer,monoclonal antibodies (mAbs) of human origin are superior to mouse,mouse/human chimeric or humanized mAbs,because of their minimum immunogenicity to humans and their efficient collaboration with human effector cells. In the present study,human mAbs were prepared against a pancarcinoma antigen,MK-1 (Ep-CAM),using a genetically-engineered mouse (KM mouse) that contains the human immunoglobulin genes. Spleen cells from KM mice,immunized with recombinant MK-1,were fused with P3-U1 mouse myeloma cells. Of 44 anti-MK-1 clones analyzed,two were of IgG4 and the others of IgM clones. Although the two IgG4 clones were suggested to recognize the same antigenic determinant or two closely located determinants,their VK regions were encoded by different light-chain genes while their VH sequences were identical. The two IgG4 and one of the IgM clones tested revealed antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity,respectively,against MK-1-expressing cells in vitro,suggesting that these fully human mAbs produced against MK-1 and their V-region genes,which are applicable for the preparation of engineered antibody fragments that may be useful for antibody-based therapy of cancer.
View Publication