Nguyen HX et al. (AUG 2014)
Journal of Comparative Neurology 522 12 2767--2783
Induction of early neural precursors and derivation of tripotent neural stem cells from human pluripotent stem cells under xeno-free conditions
Human embryonic stem cells (hESC) and induced pluripotent stem cells (hiPSC) can differentiate into many cell types and are important for regenerative medicine; however,further work is needed to reliably differentiate hESC and hiPSC into neural-restricted multipotent derivatives or specialized cell types under conditions that are free from animal products. Toward this goal,we tested the transition of hESC and hiPSC lines onto xeno-free (XF) / feeder-free conditions and evaluated XF substrate preference,pluripotency,and karyotype. Critically,XF transitioned H9 hESC,Shef4 hESC,and iPS6-9 retained pluripotency (Oct-4 and NANOG),proliferation (MKI67 and PCNA),and normal karyotype. Subsequently,XF transitioned hESC and hiPSC were induced with epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) to generate neuralized spheres containing primitive neural precursors,which could differentiate into astrocytes and neurons,but not oligoprogenitors. Further neuralization of spheres via LIF supplementation and attachment selection on CELLstart substrate generated adherent human neural stem cells (hNSC) with normal karyotype and high proliferation potential under XF conditions. Interestingly,adherent hNSC derived from H9,Shef4,and iPS6-9 differentiated into significant numbers of O4+ oligoprogenitors (∼20-30%) with robust proliferation; however,very few GalC+ cells were observed (∼2-4%),indicative of early oligodendrocytic lineage commitment. Overall,these data demonstrate the transition of multiple hESC and hiPSC lines onto XF substrate and media conditions,and a reproducible neuralization method that generated neural derivatives with multipotent cell fate potential and normal karyotype.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Wang H et al. (JAN 2012)
Journal of translational medicine 10 1 167
Oncolytic vaccinia virus GLV-1h68 strain shows enhanced replication in human breast cancer stem-like cells in comparison to breast cancer cells.
BACKGROUND: Recent data suggest that cancer stem cells (CSCs) play an important role in cancer,as these cells possess enhanced tumor-forming capabilities and are responsible for relapses after apparently curative therapies have been undertaken. Hence,novel cancer therapies will be needed to test for both tumor regression and CSC targeting. The use of oncolytic vaccinia virus (VACV) represents an attractive anti-tumor approach and is currently under evaluation in clinical trials. The purpose of this study was to demonstrate whether VACV does kill CSCs that are resistant to irradiation and chemotherapy. METHODS: Cancer stem-like cells were identified and separated from the human breast cancer cell line GI-101A by virtue of increased aldehyde dehydrogenase 1 (ALDH1) activity as assessed by the ALDEFLUOR assay and cancer stem cell-like features such as chemo-resistance,irradiation-resistance and tumor-initiating were confirmed in cell culture and in animal models. VACV treatments were applied to both ALDEFLUOR-positive cells in cell culture and in xenograft tumors derived from these cells. Moreover,we identified and isolated CD44(+)CD24(+)ESA(+) cells from GI-101A upon an epithelial-mesenchymal transition (EMT). These cells were similarly characterized both in cell culture and in animal models. RESULTS: We demonstrated for the first time that the oncolytic VACV GLV-1h68 strain replicated more efficiently in cells with higher ALDH1 activity that possessed stem cell-like features than in cells with lower ALDH1 activity. GLV-1h68 selectively colonized and eventually eradicated xenograft tumors originating from cells with higher ALDH1 activity. Furthermore,GLV-1h68 also showed preferential replication in CD44(+)CD24(+)ESA(+) cells derived from GI-101A upon an EMT induction as well as in xenograft tumors originating from these cells that were more tumorigenic than CD44(+)CD24(-)ESA(+) cells. CONCLUSIONS: Taken together,our findings indicate that GLV-1h68 efficiently replicates and kills cancer stem-like cells. Thus,GLV-1h68 may become a promising agent for eradicating both primary and metastatic tumors,especially tumors harboring cancer stem-like cells that are resistant to chemo and/or radiotherapy and may be responsible for recurrence of tumors.
View Publication
产品类型:
产品号#:
01700
01705
05620
产品名:
ALDEFLUOR™工具
ALDEFLUOR™DEAB试剂
MammoCult™ 人源培养基套装
文献
Buono M et al. (AUG 2010)
The Journal of experimental medicine 207 8 1647--60
Self-renewal and differentiation of hematopoietic stem cells (HSCs) are balanced by the concerted activities of the fibroblast growth factor (FGF),Wnt,and Notch pathways,which are tuned by enzyme-mediated remodeling of heparan sulfate proteoglycans (HSPGs). Sulfatase modifying factor 1 (SUMF1) activates the Sulf1 and Sulf2 sulfatases that remodel the HSPGs,and is mutated in patients with multiple sulfatase deficiency. Here,we show that the FGF signaling pathway is constitutively activated in Sumf1(-/-) HSCs and hematopoietic stem progenitor cells (HSPCs). These cells show increased p-extracellular signal-regulated kinase levels,which in turn promote beta-catenin accumulation. Constitutive activation of FGF signaling results in a block in erythroid differentiation at the chromatophilic erythroblast stage,and of B lymphocyte differentiation at the pro-B cell stage. A reduction in mature myeloid cells and an aberrant development of T lymphocytes are also seen. These defects are rescued in vivo by blocking the FGF pathway in Sumf1(-/-) mice. Transplantation of Sumf1(-/-) HSPCs into wild-type mice reconstituted the phenotype of the donors,suggesting a cell autonomous defect. These data indicate that Sumf1 controls HSPC differentiation and hematopoietic lineage development through FGF and Wnt signaling.
View Publication
产品类型:
产品号#:
09600
09650
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
文献
Suehiro Y et al. (NOV 1999)
Experimental hematology 27 11 1637--45
Macrophage inflammatory protein 1alpha enhances in a different manner adhesion of hematopoietic progenitor cells from bone marrow, cord blood, and mobilized peripheral blood.
Regulatory mechanisms governing adhesion of hematopoietic progenitor cells to the stromal nische are poorly understood. Growth factors such as stem cell factor (SCF),granulocyte-macrophage colony-stimulating factor,and thrombopoietin were reported to upregulate the adhesion of hematopoietic progenitors to immobilized fibronectin through activation of integrin alpha4beta1 and alpha5beta1. Macrophage inflammatory protein (MIP)-1alpha is a C-C chemokine that suppresses colony formation by stem/progenitor cells in vitro. We asked if MIP-1alpha would modulate the adhesive phenotype of colony-forming cells (CFCs) obtained from healthy donor bone marrow (BM),cord blood (CB),and mobilized peripheral blood (mPB) CD34+ cells,in comparison with SCF,using immobilized fibronectin. SCF significantly increased the level of adhesion of CFCs from BM,CB,and mPB. On the other hand,MIP-1alpha significantly increased the level of adhesion of CFCs from BM and CB,but less so from mPB. The effects of MIP-1alpha were inhibited by blocking antibodies to integrin alpha4,alpha5,or beta1,and polymerization plus rearrangement of F-actin were observed in affected cells by labeling with rhodamine-conjugated phalloidine. These data indicate that the effect of MIP-1alpha on the adhesive phenotype of CFCs is mediated by modulation of the organization of integrin. The amount of MIP-1alpha receptor on mPB was less than for BM or CB,which may explain the distinct characteristics in the adhesive response induced by MIP-1alpha. We suggest that hematopoietic progenitor cells from different sources may be heterogeneous with respect to maturation,integrin affinity,MIP-1alpha receptor expression,and regulation of MIP-1alpha signaling. Our data indicate that MIP-1alpha may affect migration,homing,and mobilization of hematopoietic progenitors by modulating the adhesive phenotype of these cells.
View Publication
产品类型:
产品号#:
产品名:
文献
Uchida N et al. (OCT 2009)
Journal of virology 83 19 9854--62
Development of a human immunodeficiency virus type 1-based lentiviral vector that allows efficient transduction of both human and rhesus blood cells.
Human immunodeficiency virus type 1 (HIV-1) vectors transduce rhesus blood cells poorly due to a species-specific block by TRIM5alpha and APOBEC3G,which target HIV-1 capsid and viral infectivity factor (Vif),respectively. We sought to develop a lentiviral vector capable of transducing both human and rhesus blood cells by combining components of both HIV-1 and simian immunodeficiency virus (SIV),including SIV capsid (sCA) and SIV Vif. A chimeric HIV-1 vector including sCA (chiHIV) was superior to the conventional SIV in transducing a human blood cell line and superior to the conventional HIV-1 vector in transducing a rhesus blood cell line. Among human CD34(+) hematopoietic stem cells (HSCs),the chiHIV and HIV-1 vectors showed similar transduction efficiencies; in rhesus CD34(+) HSCs,the chiHIV vector yielded superior transduction rates. In in vivo competitive repopulation experiments with two rhesus macaques,the chiHIV vector demonstrated superior marking levels over the conventional HIV-1 vector in all blood lineages (first rhesus,15 to 30% versus 1 to 5%; second rhesus,7 to 15% versus 0.5 to 2%,respectively) 3 to 7 months postinfusion. In summary,we have developed an HIV-1-based lentiviral vector system that should allow comprehensive preclinical testing of HIV-1-based therapeutic vectors in the rhesus macaque model with eventual clinical application.
View Publication
产品类型:
产品号#:
04230
产品名:
MethoCult™H4230
文献
Carpenter L et al. (APR 2012)
Stem cells and development 21 6 977--86
Efficient differentiation of human induced pluripotent stem cells generates cardiac cells that provide protection following myocardial infarction in the rat.
Induced pluripotent stem (iPS) cells are being used increasingly to complement their embryonic counterparts to understand and develop the therapeutic potential of pluripotent cells. Our objectives were to identify an efficient cardiac differentiation protocol for human iPS cells as monolayers,and demonstrate that the resulting cardiac progenitors could provide a therapeutic benefit in a rodent model of myocardial infarction. Herein,we describe a 14-day protocol for efficient cardiac differentiation of human iPS cells as a monolayer,which routinely yielded a mixed population in which over 50% were cardiomyocytes,endothelium,or smooth muscle cells. When differentiating,cardiac progenitors from day 6 of this protocol were injected into the peri-infarct region of the rat heart; after coronary artery ligation and reperfusion,we were able to show that human iPS cell-derived cardiac progenitor cells engrafted,differentiated into cardiomyocytes and smooth muscle,and persisted for at least 10 weeks postinfarct. Hearts injected with iPS-derived cells showed a nonsignificant trend toward protection from decline in function after myocardial infarction,as assessed by magnetic resonance imaging at 10 weeks,such that the ejection fraction at 10 weeks in iPS treated hearts was 62%±4%,compared to that of control infarcted hearts at 45%±9% (Ptextless0.2). In conclusion,we demonstrated efficient cardiac differentiation of human iPS cells that gave rise to progenitors that were retained within the infarcted rat heart,and reduced remodeling of the heart after ischemic damage.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Alla RK and Cairns BR (JAN 2014)
PloS one 9 1 e85648
RNA polymerase III transcriptomes in human embryonic stem cells and induced pluripotent stem cells, and relationships with pluripotency transcription factors
Recent genomic approaches have revealed that the repertoire of RNA Pol III-transcribed genes varies in different human cell types,and that this variation is likely determined by a combination of the chromatin landscape,cell-specific DNA-binding transcription factors,and collaboration with RNA Pol II. Although much is known about this regulation in differentiated human cells,there is presently little understanding of this aspect of the Pol III system in human ES cells. Here,we determine the occupancy profiles of Pol III components in human H1 ES cells,and also induced pluripotent cells,and compare to known profiles of chromatin,transcription factors,and RNA expression. We find a relatively large fraction of the Pol III repertoire occupied in human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs). In ES cells we find clear correlations between Pol III occupancy and active chromatin. Interestingly,we find a highly significant fraction of Pol III-occupied genes with adjacent binding events by pluripotency factors in ES cells,especially NANOG. Notably,in human ES cells we find H3K27me3 adjacent to but not overlapping many active Pol III loci. We observe in all such cases,a peak of H3K4me3 and/or RNA Pol II,between the H3K27me3 and Pol III binding peaks,suggesting that H3K4me3 and Pol II activity may “insulate�? Pol III from neighboring repressive H3K27me3. Further,we find iPSCs have a larger Pol III repertoire than their precursors. Finally,the active Pol III genome in iPSCs is not completely reprogrammed to a hESC like state and partially retains the transcriptional repertoire of the precursor. Together,our correlative results are consistent with Pol III binding and activity in human ES cells being enabled by active/permissive chromatin that is shaped in part by the pluripotency network of transcription factors and RNA Pol II activity.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Gleeson LE et al. (MAR 2016)
Journal of Immunology 196 6 2444--9
Cutting Edge: Mycobacterium tuberculosis Induces Aerobic Glycolysis in Human Alveolar Macrophages That Is Required for Control of Intracellular Bacillary Replication.
Recent advances in immunometabolism link metabolic changes in stimulated macrophages to production of IL-1β,a crucial cytokine in the innate immune response to Mycobacterium tuberculosis. To investigate this pathway in the host response to M. tuberculosis,we performed metabolic and functional studies on human alveolar macrophages,human monocyte-derived macrophages,and murine bone marrow-derived macrophages following infection with the bacillus in vitro. M. tuberculosis infection induced a shift from oxidative phosphorylation to aerobic glycolysis in macrophages. Inhibition of this shift resulted in decreased levels of proinflammatory IL-1β and decreased transcription of PTGS2,increased levels of anti-inflammatory IL-10,and increased intracellular bacillary survival. Blockade or absence of IL-1R negated the impact of aerobic glycolysis on intracellular bacillary survival,demonstrating that infection-induced glycolysis limits M. tuberculosis survival in macrophages through induction of IL-1β. Drugs that manipulate host metabolism may be exploited as adjuvants for future therapeutic and vaccination strategies.
View Publication
产品类型:
产品号#:
19359
19359RF
产品名:
EasySep™人单核细胞分选试剂盒
RoboSep™ 人单核细胞分选试剂盒
文献
Peters PJ et al. (JUL 2006)
Journal of virology 80 13 6324--32
Non-macrophage-tropic human immunodeficiency virus type 1 R5 envelopes predominate in blood, lymph nodes, and semen: implications for transmission and pathogenesis.
Human immunodeficiency virus type 1 (HIV-1) R5 isolates that predominantly use CCR5 as a coreceptor are frequently described as macrophage tropic. Here,we compare macrophage tropism conferred by HIV-1 R5 envelopes that were derived directly by PCR from patient tissue. This approach avoids potentially selective culture protocols used in virus isolation. Envelopes were amplified (i) from blood and semen of adult patients and (ii) from plasma of pediatric patients. The phenotypes of these envelopes were compared to those conferred by an extended panel of envelopes derived from brain and lymph node that we reported previously. Our results show that R5 envelopes vary by up to 1,000-fold in their capacity to confer infection of primary macrophages. Highly macrophage-tropic envelopes were predominate in brain but were infrequent in semen,blood,and lymph node samples. We also confirmed that the presence of N283 in the C2 CD4 binding site of gp120 is associated with HIV-1 envelopes from the brain but absent from macrophage-tropic envelopes amplified from blood and semen. Finally,we compared infection of macrophages,CD4(+) T cells,and peripheral blood mononuclear cells (PBMCs) conferred by macrophage-tropic and non-macrophage-tropic envelopes in the context of full-length replication competent viral clones. Non-macrophage-tropic envelopes conferred low-level infection of macrophages yet infected CD4(+) T cells and PBMCs as efficiently as highly macrophage-tropic brain envelopes. The lack of macrophage tropism for the majority of the envelopes amplified from lymph node,blood,and semen is striking and contrasts with the current consensus that R5 primary isolates are generally macrophage tropic. The extensive variation in R5 tropism reported here is likely to have an important impact on pathogenesis and on the capacity of HIV-1 to transmit.
View Publication
Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease.
Previous studies have shown the relevance of bone marrow-derived MSCs (BM-MSCs) in controlling graft-versus-host disease (GVHD) after allogeneic transplantation. Since adipose tissue-derived MSCs (Ad-MSCs) may constitute a good alternative to BM-MSCs,we have expanded MSCs derived from human adipose tissue (hAd-MSCs) and mouse adipose tissue (mAd-MSCs),investigated the immunoregulatory properties of these cells,and evaluated their capacity to control GVHD in mice. The phenotype and immunoregulatory properties of expanded hAd-MSCs were similar to those of human BM-MSCs. Moreover,hAd-MSCs inhibited the proliferation and cytokine secretion of human primary T cells in response to mitogens and allogeneic T cells. Similarly,ex vivo expanded mAd-MSCs had an equivalent immunophenotype and exerted immunoregulatory properties similar to those of hAd-MSCs. Moreover,the infusion of mAd-MSCs in mice transplanted with haploidentical hematopoietic grafts controlled the lethal GVHD that occurred in control recipient mice. These findings constitute the first experimental proof that Ad-MSCs can efficiently control the GVHD associated with allogeneic hematopoietic transplantation,opening new perspectives for the clinical use of Ad-MSCs.
View Publication
产品类型:
产品号#:
05401
05402
05411
产品名:
MesenCult™ MSC 基础培养基(人)
MesenCult™ MSC 刺激补充剂(人)
MesenCult™ 增殖试剂盒(人)
文献
Hannum C et al. (APR 1994)
Nature 368 6472 643--8
Ligand for FLT3/FLK2 receptor tyrosine kinase regulates growth of haematopoietic stem cells and is encoded by variant RNAs.
The FLT3/FLK2 receptor tyrosine kinase is closely related to two receptors,c-Kit and c-Fms,which function with their respective ligands,Kit ligand and macrophage colony-stimulating factor to control differentiation of haematopoietic and non-haematopoietic cells. FLT3/FLK2 is thought to be present on haematopoietic stem cells and found in brain,placenta and testis. We have purified to homogeneity and partially sequenced a soluble form of the FLT3/FLK2 ligand produced by mouse thymic stromal cells. We isolated several mouse and human complementary DNAs that encode polypeptides with identical N termini and different C termini. Some variants contain hydrophobic transmembrane segments,suggesting that processing may be required to release soluble ligand. The purified ligand enhances the response of mouse stem cells and a primitive human progenitor cell population to other growth factors such as interleukins IL-3 and IL-6 and to granulocyte-macrophage colony-stimulating factor,and also stimulates fetal thymocytes.
View Publication