Murphy SV et al. (JAN 2013)
Journal of biomedical materials research. Part A 101 1 272--84
Evaluation of hydrogels for bio-printing applications.
In the United States alone,there are approximately 500,000 burn injuries that require medical treatment every year. Limitations of current treatments necessitate the development of new methods that can be applied quicker,result in faster wound regeneration,and yield skin that is cosmetically similar to undamaged skin. The development of new hydrogel biomaterials and bioprinting deposition technologies has provided a platform to address this need. Herein we evaluated characteristics of twelve hydrogels to determine their suitability for bioprinting applications. We chose hydrogels that are either commercially available,or are commonly used for research purposes. We evaluated specific hydrogel properties relevant to bioprinting applications,specifically; gelation time,swelling or contraction,stability,biocompatibility and printability. Further,we described regulatory,commercial and financial aspects of each of the hydrogels. While many of the hydrogels screened may exhibit characteristics suitable for other applications,UV-crosslinked Extracel,a hyaluronic acid-based hydrogel,had many of the desired properties for our bioprinting application. Taken together with commercial availability,shelf life,potential for regulatory approval and ease of use,these materials hold the potential to be further developed into fast and effective wound healing treatments.
View Publication
X. Wang et al. (jun 2022)
Journal of experimental & clinical cancer research : CR 41 1 210
Expanding anti-CD38 immunotherapy for lymphoid malignancies.
BACKGROUND Lymphoid neoplasms,including multiple myeloma (MM),non-Hodgkin lymphoma (NHL),and NK/T cell neoplasms,are a major cause of blood cancer morbidity and mortality. CD38 (cyclic ADP ribose hydrolase) is a transmembrane glycoprotein expressed on the surface of plasma cells and MM cells. The high expression of CD38 across MM and other lymphoid malignancies and its restricted expression in normal tissues make CD38 an attractive target for immunotherapy. CD38-targeting antibodies,like daratumumab,have been approved for the treatment of MM and tested against lymphoma and leukemia in multiple clinical trials. METHODS We generated chimeric antigen receptor (CAR) T cells targeting CD38 and tested its cytotoxicity against multiple CD38high and CD38low lymphoid cancer cells. We evaluated the synergistic effects of all-trans retinoic acid (ATRA) and CAR T cells or daratumumab against cancer cells and xenograft tumors. RESULTS CD38-CAR T cells dramatically inhibited the growth of CD38high MM,mantle cell lymphoma (MCL),Waldenstrom's macroglobulinemia (WM),T-cell acute lymphoblastic leukemia (T-ALL),and NK/T-cell lymphoma (NKTCL) in vitro and in mouse xenografts. ATRA elevated CD38 expression in multiple CD38low cancer cells and enhanced the anti-tumor activity of daratumumab and CD38-CAR T cells in xenograft tumors. CONCLUSIONS These findings may expand anti-CD38 immunotherapy to a broad spectrum of lymphoid malignancies and call for the incorporation of ATRA into daratumumab or other anti-CD38 immunological agents for cancer therapy.
View Publication
产品类型:
产品号#:
17951
产品名:
EasySep™人T细胞分选试剂盒
文献
Yew CW and Tan YJ ( 2016)
1426 225--33
Generation of mouse monoclonal antibodies specific to Chikungunya virus using ClonaCell-HY hybridoma cloning kit
Monoclonal antibodies offer high specificity and this makes it an important tool for molecular biology,biochemistry and medicine. Typically,monoclonal antibodies are generated by fusing mouse spleen cells that have been immunized with the desired antigen with myeloma cells to create immortalized hybridomas. Here,we describe the generation of monoclonal antibodies that are specific to Chikungunya virus using ClonaCell-HY system.
View Publication
产品类型:
产品号#:
03800
03801
03802
03803
03804
03805
03806
产品名:
ClonaCell™-HY杂交瘤试剂盒
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™衔接挂钩
文献
Hardy RR et al. (MAY 1991)
The Journal of experimental medicine 173 5 1213--25
Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow.
We have resolved B220+ IgM- B-lineage cells in mouse bone marrow into four fractions based on differential cell surface expression of determinants recognized by S7 (leukosialin,CD43),BP-1,and 30F1 (heat stable antigen). Functional differences among these fractions can be correlated with Ig gene rearrangement status. The largest fraction,lacking S7,consists of pre-B cells whereas the others,expressing S7,include B lineage cells before pre-B. These S7+ fractions,provisionally termed Fr. A,Fr. B,and Fr. C,can differentiate in a stromal layer culture system. Phenotypic alteration during such culture suggests an ordering of these stages from Fr. A to Fr. B to Fr. C and thence to S7- pre-B cells. Using polymerase chain reaction amplification with pairs of oligonucleotide primers for regions 5' of JH1,DFL16.1,and Jk1,we find that the Ig genes of Fr. A are in germline configuration,whereas Fr. B and C are pro-B cell stages with increasing D-J rearrangement,but no V-D-J. Finally,functional analysis demonstrates that the proliferative response to IL-7,an early B lineage growth factor,is restricted to S7+ stages and,furthermore,that an additional,cell contact-mediated signal is essential for survival of Fr. A.
View Publication
产品类型:
产品号#:
产品名:
文献
Barrett LE et al. (JAN 2012)
Cancer cell 21 1 11--24
Self-renewal does not predict tumor growth potential in mouse models of high-grade glioma.
Within high-grade gliomas,the precise identities and functional roles of stem-like cells remain unclear. In the normal neurogenic niche,ID (Inhibitor of DNA-binding) genes maintain self-renewal and multipotency of adult neural stem cells. Using PDGF- and KRAS-driven murine models of gliomagenesis,we show that high Id1 expression (Id1(high)) identifies tumor cells with high self-renewal capacity,while low Id1 expression (Id1(low)) identifies tumor cells with proliferative potential but limited self-renewal capacity. Surprisingly,Id1(low) cells generate tumors more rapidly and with higher penetrance than Id1(high) cells. Further,eliminating tumor cell self-renewal through deletion of Id1 has modest effects on animal survival,while knockdown of Olig2 within Id1(low) cells has a significant survival benefit,underscoring the importance of non-self-renewing lineages in disease progression.
View Publication
产品类型:
产品号#:
05700
05701
05702
产品名:
NeuroCult™ 基础培养基(小鼠和大鼠)
NeuroCult™ 扩增添加物(小鼠和大鼠)
NeuroCult™扩增试剂盒(小鼠和大鼠)
文献
Karelina K et al. (MAR 2014)
Experimental neurology 253 72--81
Ribosomal S6 kinase regulates ischemia-induced progenitor cell proliferation in the adult mouse hippocampus.
Ischemia-induced progenitor cell proliferation is a prominent example of the adult mammalian brain's ability to regenerate injured tissue resulting from pathophysiological processes. In order to better understand and exploit the cell signaling mechanisms that regulate ischemia-induced proliferation,we examined the role of the p42/44 mitogen-activated protein kinase (MAPK) cascade effector ribosomal S6 kinase (RSK) in this process. Here,using the endothelin-1 ischemia model in wild type mice,we show that the activated form of RSK is expressed in the progenitor cells of the subgranular zone (SGZ) after intrahippocampal cerebral ischemia. Further,RSK inhibition significantly reduces ischemia-induced SGZ progenitor cell proliferation. Using the neurosphere assay,we also show that both SGZ- and subventricular zone (SVZ)-derived adult neural stem cells (NSC) exhibit a significant reduction in proliferation in the presence of RSK and MAPK inhibitors. Taken together,these data reveal RSK as a regulator of ischemia-induced progenitor cell proliferation,and as such,suggest potential therapeutic value may be gained by specifically targeting the regulation of RSK in the progenitor cell population of the SGZ.
View Publication
产品类型:
产品号#:
72714
产品名:
BI-D1870
文献
Lee WT et al. (DEC 2016)
Developmental & Comparative Immunology 65 114--123
Identification of secreted and membrane-bound bat immunoglobulin using a Microchiropteran-specific mouse monoclonal antibody
Bat immunity has received increasing attention because some bat species are being decimated by the fungal disease,White Nose Syndrome,while other species are potential reservoirs of zoonotic viruses. Identifying specific immune processes requires new specific tools and reagents. In this study,we describe a new mouse monoclonal antibody (mAb) reactive with Eptesicus fuscus immunoglobulins. The epitope recognized by mAb BT1-4F10 was localized to immunoglobulin light (lambda) chains; hence,the mAb recognized serum immunoglobulins and B lymphocytes. The BT1-4F10 epitope appeared to be restricted to Microchiropteran immunoglobulins and absent from Megachiropteran immunoglobulins. Analyses of sera and other E. fuscus fluids showed that most,if not all,secreted immunoglobulins utilized lambda light chains. Finally,mAb BT1-4F10 permitted the identification of B cell follicles in splenic white pulp. This Microchiropteran-specific mAb has potential utility in seroassays; hence,this reagent may have both basic and practical applications for studying immune process.
View Publication
产品类型:
产品号#:
03800
03801
03802
03803
03804
03805
03806
产品名:
ClonaCell™-HY杂交瘤试剂盒
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™衔接挂钩
文献
Smith MS et al. (SEP 2010)
Cell host & microbe 8 3 284--91
Granulocyte-colony stimulating factor reactivates human cytomegalovirus in a latently infected humanized mouse model.
Human cytomegalovirus (HCMV) is a significant cause of morbidity and mortality in organ transplant recipients. The use of granulocyte-colony stimulating factor (G-CSF)-mobilized stem cells from HCMV seropositive donors is suggested to double the risk of late-onset HCMV disease and chronic graft-versus-host disease in recipients when compared to conventional bone marrow transplantation with HCMV seropositive donors,although the etiology of the increased risk is unknown. To understand mechanisms of HCMV transmission in patients receiving G-CSF-mobilized blood products,we generated a NOD-scid IL2Rγ(c)(null)-humanized mouse model in which HCMV establishes latent infection in human hematopoietic cells. In this model,G-CSF induces the reactivation of latent HCMV in monocytes/macrophages that have migrated into organ tissues. In addition to establishing a humanized mouse model for systemic and latent HCMV infection,these results suggest that the use of G-CSF mobilized blood products from seropositive donors pose an elevated risk for HCMV transmission to recipients.
View Publication