Y. Numata et al. (May 2025)
Cell Death & Disease 16 1
Digoxin promotes anoikis of circulating cancer cells by targeting Na + /K + -ATPase α3-isoform
Circulating cancer cells (CCCs) are closely related to the process of distant metastasis. In early step of the metastasis cascade,CCCs must evade the detachment-induced cell death (anoikis) for their survival. Here,we examined whether Na + /K + -ATPase α3-isoform (α3NaK) in CCCs contributes to avoidance of anoikis. In CCCs isolated from gastric cancer patients,α3NaK was predominantly localized in the plasma membrane (PM),but it moved to the cytoplasm when the CCCs were attached to culture dishes. The CCCs showed significant expression of integrin α5 but not fibronectin,one of components of the extracellular matrix (ECM). In human gastric cancer MKN45 cells,digoxin (20 and 50 nM),a cardiac glycoside,significantly inhibited the enzyme activity and translocation (from cytoplasm to PM) of α3NaK,while they had no significant effect on ubiquitous Na + /K + -ATPase α1-isoform (α1NaK) in the PM. The translocation of α3NaK required the loss of ECM components from the cells. Additionally,digoxin significantly enhanced caspase 3/7 activity,as well as the expression of cleaved caspase 3,while reducing the viability of detached (floating) cells. In the MKN45 xenograft mouse model,intraperitoneal administration of digoxin (2 mg/kg/day) significantly decreased the number of CCCs and suppressed their liver metastasis. Our results suggest that α3NaK plays an essential role in the survival of CCCs in gastric cancer,and that digoxin enhances anoikis in detached (metastatic) gastric cancer cells by inhibiting the α3NaK translocation from cytoplasm to PM,thereby reducing CCCs. Targeting α3NaK may be a promising therapeutic strategy against CCC survival. Subject terms: Metastasis,Gastric cancer,Apoptosis
View Publication
产品类型:
产品号#:
15122
15162
产品名:
RosetteSep™ 人CD45去除抗体混合物
RosetteSep™人CD45去除抗体混合物
(Feb 2024)
Cancer Immunology Research 12 4
High-Specificity CRISPR-Mediated Genome Engineering in Anti-BCMA Allogeneic CAR T Cells Suppresses Allograft Rejection in Preclinical Models
Allogeneic CAR T–cell therapies are being developed for hematologic malignancies. The authors implement a Cas12a chRDNA platform to generate allogeneic immune-cloaked BCMA-specific CAR T cells with resistance to host response–mediated rejection for evaluation in multiple myeloma. AbstractAllogeneic chimeric antigen receptor (CAR) T cell therapies hold the potential to overcome many of the challenges associated with patient-derived (autologous) CAR T cells. Key considerations in the development of allogeneic CAR T cell therapies include prevention of graft-vs-host disease (GvHD) and suppression of allograft rejection. Here,we describe preclinical data supporting the ongoing first-in-human clinical study,the CaMMouflage trial (NCT05722418),evaluating CB-011 in patients with relapsed/refractory multiple myeloma. CB-011 is a hypoimmunogenic,allogeneic anti–B-cell maturation antigen (BCMA) CAR T cell therapy candidate. CB-011 cells feature 4 genomic alterations and were engineered from healthy donor–derived T cells using a Cas12a CRISPR hybrid RNA–DNA (chRDNA) genome-editing technology platform. To address allograft rejection,CAR T cells were engineered to prevent endogenous HLA class I complex expression and overexpress a single-chain polyprotein complex composed of beta-2 microglobulin (B2M) tethered to HLA-E. In addition,T-cell receptor (TCR) expression was disrupted at the TCR alpha constant locus in combination with the site-specific insertion of a humanized BCMA-specific CAR. CB-011 cells exhibited robust plasmablast cytotoxicity in vitro in a mixed lymphocyte reaction in cell cocultures derived from patients with multiple myeloma. In addition,CB-011 cells demonstrated suppressed recognition by and cytotoxicity from HLA-mismatched T cells. CB-011 cells were protected from natural killer cell–mediated cytotoxicity in vitro and in vivo due to endogenous promoter-driven expression of B2M–HLA-E. Potent antitumor efficacy,when combined with an immune-cloaking armoring strategy to dampen allograft rejection,offers optimized therapeutic potential in multiple myeloma. See related Spotlight by Caimi and Melenhorst,p. 385
View Publication
产品类型:
产品号#:
100-0956
10981
17951
100-0695
17951RF
产品名:
ImmunoCult™ XF培养基
ImmunoCult™ XF 人T细胞扩增培养基,500 mL
EasySep™人T细胞分选试剂盒
EasySep™人T细胞分选试剂盒
RoboSep™ 人T细胞分选试剂盒
S. Murty et al. (nov 2020)
Cancer research 80 21 4731--4740
PET Reporter Gene Imaging and Ganciclovir-Mediated Ablation of Chimeric Antigen Receptor T Cells in Solid Tumors.
Imaging strategies to monitor chimeric antigen receptor (CAR) T-cell biodistribution and proliferation harbor the potential to facilitate clinical translation for the treatment of both liquid and solid tumors. In addition,the potential adverse effects of CAR T cells highlight the need for mechanisms to modulate CAR T-cell activity. The herpes simplex virus type 1 thymidine kinase (HSV1-tk) gene has previously been translated as a PET reporter gene for imaging of T-cell trafficking in patients with brain tumor. The HSV1-TK enzyme can act as a suicide gene of transduced cells through treatment with the prodrug ganciclovir. Here we report the molecular engineering,imaging,and ganciclovir-mediated destruction of B7H3 CAR T cells incorporating a mutated version of the HSV1-tk gene (sr39tk) with improved enzymatic activity for ganciclovir. The sr39tk gene did not affect B7H3 CAR T-cell functionality and in vitro and in vivo studies in osteosarcoma models showed no significant effect on B7H3 CAR T-cell antitumor activity. PET/CT imaging with 9-(4-[18F]-fluoro-3-[hydroxymethyl]butyl)guanine ([18F]FHBG) of B7H3-sr39tk CAR T cells in an orthotopic model of osteosarcoma revealed tumor homing and systemic immune expansion. Bioluminescence and PET imaging of B7H3-sr39tk CAR T cells confirmed complete tumor ablation with intraperitoneal ganciclovir administration. This imaging and suicide ablation system can provide insight into CAR T-cell migration and proliferation during clinical trials while serving as a suicide switch to limit potential toxicities. SIGNIFICANCE: This study showcases the only genetically engineered system capable of serving the dual role both as an effective PET imaging reporter and as a suicide switch for CAR T cells.
View Publication
Kabanova A et al. (APR 2016)
Cell Reports 15 1 9--18
Human Cytotoxic T Lymphocytes Form Dysfunctional Immune Synapses with B Cells Characterized by Non-Polarized Lytic Granule Release.
Suppression of the cytotoxic T cell (CTL) immune response has been proposed as one mechanism for immune evasion in cancer. In this study,we have explored the underlying basis for CTL suppression in the context of B cell malignancies. We document that human B cells have an intrinsic ability to resist killing by freshly isolated cytotoxic T cells (CTLs),but are susceptible to lysis by IL-2 activated CTL blasts and CTLs isolated from immunotherapy-treated patients with chronic lymphocytic leukemia (CLL). Impaired killing was associated with the formation of dysfunctional non-lytic immune synapses characterized by the presence of defective linker for activation of T cells (LAT) signaling and non-polarized release of the lytic granules transported by ADP-ribosylation factor-like protein 8 (Arl8). We propose that non-lytic degranulation of CTLs are a key regulatory mechanism of evasion through which B cells may interfere with the formation of functional immune synapses by CTLs.
View Publication
产品类型:
产品号#:
15024
15064
15023
15063
产品名:
RosetteSep™ 人B细胞富集抗体混合物
RosetteSep™人B细胞富集抗体混合物
RosetteSep™ 人CD8+ T细胞富集抗体混合物
RosetteSep™人CD8+ T细胞富集抗体混合物
Lai W-H et al. (DEC 2010)
Cellular reprogramming 12 6 641--653
ROCK inhibition facilitates the generation of human-induced pluripotent stem cells in a defined, feeder-, and serum-free system.
Human-induced pluripotent stem cells (iPSCs) generated from human adult somatic cells through reprogramming hold great promises for future regenerative medicine. However,exposure of human iPSCs to animal feeder and serum in the process of their generation and maintenance imposes risk of transmitting animal pathogens to human subjects,thus hindering the potential therapeutic applications. Here,we report the successful generation of human iPSCs in a feeder-independent culture system with defined factors. Two stable human iPSC lines were established from primary human dermal fibroblasts of two healthy volunteers. These human iPSCs expressed a panel of pluripotency markers including stage-specific embryonic antigen (SSEA)-4,tumor-rejection antigen (TRA)-1-60,TRA-1-81,and alkaline phosphatase,while maintaining normal karyotypes and the exogenous reprogramming factors being silenced. In addition,these human iPSCs can differentiate along lineages representative of the three embryonic germ layers upon formation of embryoid bodies,indicating their pluripotency. Furthermore,subcutaneous transplantation of these cells into immunodeficient mice resulted in teratoma formation in 6 to 8 weeks. Our findings are an important step toward generating patient-specific iPSCs in a more clinically compliant manner by eliminating the need of animal feeder cells and animal serum.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
(Apr 2024)
Cell Communication and Signaling : CCS 22 9274
Gut microbiota-derived butyrate restores impaired regulatory T cells in patients with AChR myasthenia gravis via mTOR-mediated autophagy
More than 80% of patients with myasthenia gravis (MG) are positive for anti-acetylcholine receptor (AChR) antibodies. Regulatory T cells (Tregs) suppress overproduction of these antibodies,and patients with AChR antibody-positive MG (AChR MG) exhibit impaired Treg function and reduced Treg numbers. The gut microbiota and their metabolites play a crucial role in maintaining Treg differentiation and function. However,whether impaired Tregs correlate with gut microbiota activity in patients with AChR MG remains unknown. Here,we demonstrate that butyric acid-producing gut bacteria and serum butyric acid level are reduced in patients with AChR MG. Butyrate supplementation effectively enhanced Treg differentiation and their suppressive function of AChR MG. Mechanistically,butyrate activates autophagy of Treg cells by inhibiting the mammalian target of rapamycin. Activation of autophagy increased oxidative phosphorylation and surface expression of cytotoxic T-lymphocyte-associated protein 4 on Treg cells,thereby promoting Treg differentiation and their suppressive function in AChR MG. This observed effect of butyrate was blocked using chloroquine,an autophagy inhibitor,suggesting the vital role of butyrate-activated autophagy in Tregs of patients with AChR MG. We propose that gut bacteria derived butyrate has potential therapeutic efficacy against AChR MG by restoring impaired Tregs.Supplementary InformationThe online version contains supplementary material available at 10.1186/s12964-024-01588-9.
View Publication
产品类型:
产品号#:
18063
18063RF
100-1136
产品名:
EasySep™人CD4+CD127low CD25+调节性T细胞分选试剂盒
EasySep™人CD4+CD127lowCD25+调节性T细胞分离试剂盒
EasySep™人CD4+CD127low CD25+调节性T细胞分选试剂盒
Ketteler R et al. (JAN 2003)
The Journal of biological chemistry 278 4 2654--60
The cytokine-inducible Scr homology domain-containing protein negatively regulates signaling by promoting apoptosis in erythroid progenitor cells.
The small cytokine-inducible SH2 domain-containing protein (CIS) has been implicated in the negative regulation of signaling through cytokine receptors. CIS reduces growth of erythropoietin receptor (EpoR)-dependent cell lines,but its role in proliferation,differentiation,and survival of erythroid progenitor cells has not been resolved. To dissect the function of CIS in cell lines and erythroid progenitor cells,we generated green fluorescent protein (GFP)-tagged versions of wild type CIS,a mutant harboring an inactivated SH2 domain (CIS R107K),and a mutant with a deletion of the SOCS Box (CISDeltaBox). Retroviral expression of the GFP fusion proteins in BaF3-EpoR cells revealed that both Tyr-401 in the EpoR and an intact SH2 domain within CIS are prerequisites for receptor recruitment. As a consequence,both are essential for the growth inhibitory effect of CIS,whereas the CIS SOCS box is dispensable. Accordingly,the retroviral expression of GFP-CIS but not GFP-CIS R107K impaired proliferation of erythroid progenitor cells in colony assays. Erythroid differentiation was unaffected by either protein. Interestingly,apoptosis of erythroid progenitor cells was increased upon GFP-CIS expression and this required the presence both of an intact SH2 domain and the SOCS box. Thus,CIS negatively regulates signaling at two levels,apoptosis and proliferation,and thereby sets a threshold for signal transduction.
View Publication
产品类型:
产品号#:
03134
产品名:
MethoCult™M3134
Pelicano H et al. (DEC 2006)
The Journal of cell biology 175 6 913--23
Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism.
Cancer cells exhibit increased glycolysis for ATP production due,in part,to respiration injury (the Warburg effect). Because ATP generation through glycolysis is less efficient than through mitochondrial respiration,how cancer cells with this metabolic disadvantage can survive the competition with other cells and eventually develop drug resistance is a long-standing paradox. We report that mitochondrial respiration defects lead to activation of the Akt survival pathway through a novel mechanism mediated by NADH. Respiration-deficient cells (rho(-)) harboring mitochondrial DNA deletion exhibit dependency on glycolysis,increased NADH,and activation of Akt,leading to drug resistance and survival advantage in hypoxia. Similarly,chemical inhibition of mitochondrial respiration and hypoxia also activates Akt. The increase in NADH caused by respiratory deficiency inactivates PTEN through a redox modification mechanism,leading to Akt activation. These findings provide a novel mechanistic insight into the Warburg effect and explain how metabolic alteration in cancer cells may gain a survival advantage and withstand therapeutic agents.
View Publication
产品类型:
产品号#:
04230
产品名:
MethoCult™H4230
Phanstiel D et al. (MAR 2008)
Proceedings of the National Academy of Sciences of the United States of America 105 11 4093--8
Mass spectrometry identifies and quantifies 74 unique histone H4 isoforms in differentiating human embryonic stem cells.
Epigenetic regulation through chromatin is thought to play a critical role in the establishment and maintenance of pluripotency. Traditionally,antibody-based technologies were used to probe for specific posttranslational modifications (PTMs) present on histone tails,but these methods do not generally reveal the presence of multiple modifications on a single-histone tail (combinatorial codes). Here,we describe technology for the discovery and quantification of histone combinatorial codes that is based on chromatography and mass spectrometry. We applied this methodology to decipher 74 discrete combinatorial codes on the tail of histone H4 from human embryonic stem (ES) cells. Finally,we quantified the abundances of these codes as human ES cells undergo differentiation to reveal striking changes in methylation and acetylation patterns. For example,H4R3 methylation was observed only in the presence of H4K20 dimethylation; such context-specific patterning exemplifies the power of this technique.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Charafe-Jauffret E et al. (JAN 2010)
Clinical cancer research : an official journal of the American Association for Cancer Research 16 1 45--55
Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer.
PURPOSE: To examine the role of cancer stem cells (CSC) in mediating metastasis in inflammatory breast cancer (IBC) and the association of these cells with patient outcome in this aggressive type of breast cancer. EXPERIMENTAL DESIGN: CSCs were isolated from SUM149 and MARY-X,an IBC cell line and primary xenograft,by virtue of increased aldehyde dehydrogenase (ALDH) activity as assessed by the ALDEFLUOR assay. Invasion and metastasis of CSC populations were assessed by in vitro and mouse xenograft assays. Expression of ALDH1 was determined on a retrospective series of 109 IBC patients and this was correlated with histoclinical data. All statistical tests were two sided. Log-rank tests using Kaplan-Meier analysis were used to determine the correlation of ALDH1 expression with development of metastasis and patient outcome. RESULTS: Both in vitro and xenograft assays showed that invasion and metastasis in IBC are mediated by a cellular component that displays ALDH activity. Furthermore,expression of ALDH1 in IBC was an independent predictive factor for early metastasis and decreased survival in this patient population. CONCLUSIONS: These results suggest that the metastatic,aggressive behavior of IBC may be mediated by a CSC component that displays ALDH enzymatic activity. ALDH1 expression represents the first independent prognostic marker to predict metastasis and poor patient outcome in IBC. The results illustrate how stem cell research can translate into clinical practice in the IBC field.
View Publication
产品类型:
产品号#:
01700
01705
01701
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
Grudzien P et al. (OCT 2010)
Anticancer research 30 10 3853--67
Inhibition of Notch signaling reduces the stem-like population of breast cancer cells and prevents mammosphere formation.
BACKGROUND: Cancer stem cells (CSCs) are believed to be responsible for breast cancer formation and recurrence; therefore,therapeutic strategies targeting CSCs must be developed. One approach may be targeting signaling pathways,like Notch,that are involved in stem cell self-renewal and survival. MATERIALS AND METHODS: Breast cancer stem-like cells derived from cell lines and patient samples were examined for Notch expression and activation. The effect of Notch inhibition on sphere formation,proliferation,and colony formation was determined. RESULTS: Breast cancer stem-like cells consistently expressed elevated Notch activation compared with bulk tumor cells. Blockade of Notch signaling using pharmacologic and genomic approaches prevented sphere formation,proliferation,and/or colony formation in soft agar. Interestingly,a gamma-secretase inhibitor,MRK003,induced apoptosis in these cells. CONCLUSION: Our findings support a crucial role for Notch signaling in maintenance of breast cancer stem-like cells,and suggest Notch inhibition may have clinical benefits in targeting CSCs.
View Publication