Involvement of the urokinase-type plasminogen activator receptor in hematopoietic stem cell mobilization.
We investigated the involvement of the urokinase-type plasminogen-activator receptor (uPAR) in granulocyte-colony-stimulating factor (G-CSF)-induced mobilization of CD34+ hematopoietic stem cells (HSCs) from 16 healthy donors. Analysis of peripheral blood mononuclear cells (PBMNCs) showed an increased uPAR expression after G-CSF treatment in CD33+ myeloid and CD14+ monocytic cells,whereas mobilized CD34+ HSCs remained uPAR negative. G-CSF treatment also induced an increase in serum levels of soluble uPAR (suPAR). Cleaved forms of suPAR (c-suPAR) were released in vitro by PBMNCs and were also detected in the serum of G-CSF-treated donors. c-suPAR was able to chemoattract CD34+ KG1 leukemia cells and CD34+ HSCs,as documented by their in vitro migratory response to a chemotactic suPAR-derived peptide (uPAR84-95). uPAR84-95 induced CD34+ KG1 and CD34+ HSC migration by activating the high-affinity fMet-Leu-Phe (fMLP) receptor (FPR). In addition,uPAR84-95 inhibited CD34+ KG1 and CD34+ HSC in vitro migration toward the stromal-derived factor 1 (SDF1),thus suggesting the heterologous desensitization of its receptor,CXCR4. Finally,uPAR84-95 treatment significantly increased the output of clonogenic progenitors from long-term cultures of CD34+ HSCs. Our findings demonstrate that G-CSF-induced upregulation of uPAR on circulating CD33+ and CD14+ cells is associated with increased uPAR shedding,which leads to the appearance of serum c-suPAR. c-suPAR could contribute to the mobilization of HSCs by promoting their FPR-mediated migration and by inducing CXCR4 desensitization.
View Publication
产品类型:
产品号#:
05150
产品名:
MyeloCult™H5100
文献
Udagawa J et al. (FEB 2006)
Endocrinology 147 2 647--58
The role of leptin in the development of the cerebral cortex in mouse embryos.
Leptin is detected in the sera,and leptin receptors are expressed in the cerebrum of mouse embryos,suggesting that leptin plays a role in cerebral development. Compared with the wild type,leptin-deficient (ob/ob) mice had fewer cells at embryonic day (E) 16 and E18 and had fewer 5-bromo-2'-deoxyuridine(+) cells at E14 and E16 in the neuroepithelium. Intracerebroventricular leptin injection in E14 ob/ob embryos increased the number of neuroepithelium cells at E16. In cultured neurosphere cells,leptin treatment increased Hes1 mRNA expression and maintained neural progenitors. Astrocyte differentiation was induced by low-dose (0.1 microg/ml) but not high-dose (1 microg/ml) leptin. High-dose leptin decreased Id mRNA and increased Ngn1 mRNA in neurosphere cells. The neuropeptide Y mRNA level in the cortical plate was lower in ob/ob than the wild type at E16 and E18. These results suggest that leptin maintains neural progenitors and is related to glial and neuronal development in embryos.
View Publication
产品类型:
产品号#:
05700
05701
05702
05703
05704
产品名:
NeuroCult™ 基础培养基(小鼠和大鼠)
NeuroCult™ 扩增添加物(小鼠和大鼠)
NeuroCult™扩增试剂盒(小鼠和大鼠)
NeuroCult™ 分化添加物(小鼠和大鼠)
NeuroCult™ 分化试剂盒(小鼠和大鼠)
文献
Takei F (JUN 1983)
Journal of immunology (Baltimore,Md. : 1950) 130 6 2794--7
Two surface antigens expressed on proliferating mouse T lymphocytes defined by rat monoclonal antibodies.
A hybrid cell line resulting from the fusion of a Con A-activated normal mouse spleen cell and a transformed mouse T cell (EL-4BU) has been used to prepare and select rat monoclonal antibodies reactive with molecules expressed on the surface of proliferating,as opposed to resting,mouse T cells. In this report,the characterization of two such antigens identified in this way is described. One antigen is a membrane component common to mitogen-activated T and B cells,some bone marrow cells,and various transformed cell lines but is not detectable on either normal thymocytes or the majority of spleen cells by radioimmunoassay or FACS analysis. It has a m.w. of approximately 200,000 daltons under nonreducing conditions and 100,000 daltons under reducing conditions. Antibodies to this antigen precipitate cell-bound transferrin but do not react directly with transferrin itself. It would thus appear that the antigen is the transferrin receptor molecule. The second antigen is not detectable on normal thymocytes,spleen cells,bone marrow cells,or mitogen-stimulated spleen cells but is expressed at high levels on some transformed T cell lines. It,too,appears to be a dimer,with a m.w. of 95,000 daltons under nonreducing conditions,decreasing to 50,000 daltons under reducing conditions. Although the function of the 95,000-dalton antigen is not yet known,its lack of expression on adult T cell populations both before and after activation suggests either a short-lived role at a very early stage of T cell development and/or an association with T cell transformation.
View Publication
产品类型:
产品号#:
产品名:
文献
Zhang Q-S et al. (DEC 2010)
Blood 116 24 5140--8
Fancd2-/- mice have hematopoietic defects that can be partially corrected by resveratrol.
Progressive bone marrow failure is a major cause of morbidity and mortality in human Fanconi Anemia patients. In an effort to develop a Fanconi Anemia murine model to study bone marrow failure,we found that Fancd2(-/-) mice have readily measurable hematopoietic defects. Fancd2 deficiency was associated with a significant decline in the size of the c-Kit(+)Sca-1(+)Lineage(-) (KSL) pool and reduced stem cell repopulation and spleen colony-forming capacity. Fancd2(-/-) KSL cells showed an abnormal cell cycle status and loss of quiescence. In addition,the supportive function of the marrow microenvironment was compromised in Fancd2(-/-) mice. Treatment with Sirt1-mimetic and the antioxidant drug,resveratrol,maintained Fancd2(-/-) KSL cells in quiescence,improved the marrow microenvironment,partially corrected the abnormal cell cycle status,and significantly improved the spleen colony-forming capacity of Fancd2(-/-) bone marrow cells. We conclude that Fancd2(-/-) mice have readily quantifiable hematopoietic defects,and that this model is well suited for pharmacologic screening studies.
View Publication
产品类型:
产品号#:
产品名:
文献
Yano M and Pirofski L-a (JAN 2011)
Clinical and vaccine immunology : CVI 18 1 59--66
Characterization of gene use and efficacy of mouse monoclonal antibodies to Streptococcus pneumoniae serotype 8.
Streptococcus pneumoniae is the most common cause of community-acquired pneumonia in the United States and globally. Despite the availability of pneumococcal capsular polysaccharide (PPS) and protein conjugate-based vaccines,the prevalence of antibiotic-resistant pneumococcal strains,serotype (ST) replacement in nonconjugate vaccine strains,and uncertainty as to whether the PPS vaccine that is used in adults protects against pneumonia emphasize the need for continued efforts to understand the nature of protective PPS antibody responses. In this study,we generated mouse monoclonal antibodies (MAbs) to a conjugate consisting of the PPS of serotype 8 (PPS8) S. pneumoniae and tetanus toxoid. Thirteen MAbs,including four IgMs that bound to PPS8 and phosphorylcholine (PC) and five IgMs and four IgG1s that bound to PPS8 but not PC,were produced,and their nucleotide sequences,epitope and fine specificity,and efficacy against lethal challenge with ST8 S. pneumoniae were determined. MAbs that bound to PPS8 exhibited gene use that was distinct from that exhibited by MAbs that bound to PC. Only PPS8-binding MAbs that did not bind PC were protective in mice. All 13 MAbs used germ line variable-region heavy (V(H)) and light (V(L)) chain genes,with no evidence of somatic hypermutation. Our data reveal a relationship between PPS specificity and V(H) gene use and MAb efficacy in mice. These findings provide insight into the relationship between antibody molecular structure and function and hold promise for the development of novel surrogates for pneumococcal vaccine efficacy.
View Publication
产品类型:
产品号#:
03800
03801
03802
03803
03804
03805
03806
产品名:
ClonaCell™-HY杂交瘤试剂盒
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™衔接挂钩
文献
Kishigami S et al. (FEB 2006)
Biochemical and biophysical research communications 340 1 183--9
Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer.
The low success rate of animal cloning by somatic cell nuclear transfer (SCNT) is believed to be associated with epigenetic errors including abnormal DNA hypermethylation. Recently,we elucidated by using round spermatids that,after nuclear transfer,treatment of zygotes with trichostatin A (TSA),an inhibitor of histone deacetylase,can remarkably reduce abnormal DNA hypermethylation depending on the origins of transferred nuclei and their genomic regions [S. Kishigami,N. Van Thuan,T. Hikichi,H. Ohta,S. Wakayama. E. Mizutani,T. Wakayama,Epigenetic abnormalities of the mouse paternal zygotic genome associated with microinsemination of round spermatids,Dev. Biol. (2005) in press]. Here,we found that 5-50 nM TSA-treatment for 10 h following oocyte activation resulted in more efficient in vitro development of somatic cloned embryos to the blastocyst stage from 2- to 5-fold depending on the donor cells including tail tip cells,spleen cells,neural stem cells,and cumulus cells. This TSA-treatment also led to more than 5-fold increase in success rate of mouse cloning from cumulus cells without obvious abnormality but failed to improve ES cloning success. Further,we succeeded in establishment of nuclear transfer-embryonic stem (NT-ES) cells from TSA-treated cloned blastocyst at a rate three times higher than those from untreated cloned blastocysts. Thus,our data indicate that TSA-treatment after SCNT in mice can dramatically improve the practical application of current cloning techniques.
View Publication
产品类型:
产品号#:
05700
05701
05702
72282
72284
产品名:
NeuroCult™ 基础培养基(小鼠和大鼠)
NeuroCult™ 扩增添加物(小鼠和大鼠)
NeuroCult™扩增试剂盒(小鼠和大鼠)
曲古抑菌素 A(Trichostatin A)
曲古抑菌素 A(Trichostatin A)
文献
Mou H et al. (APR 2012)
Cell stem cell 10 4 385--397
Generation of multipotent lung and airway progenitors from mouse ESCs and patient-specific cystic fibrosis iPSCs
Deriving lung progenitors from patient-specific pluripotent cells is a key step in producing differentiated lung epithelium for disease modeling and transplantation. By mimicking the signaling events that occur during mouse lung development,we generated murine lung progenitors in a series of discrete steps. Definitive endoderm derived from mouse embryonic stem cells (ESCs) was converted into foregut endoderm,then into replicating Nkx2.1+ lung endoderm,and finally into multipotent embryonic lung progenitor and airway progenitor cells. We demonstrated that precisely-timed BMP,FGF,and WNT signaling are required for NKX2.1 induction. Mouse ESC-derived Nkx2.1+ progenitor cells formed respiratory epithelium (tracheospheres) when transplanted subcutaneously into mice. We then adapted this strategy to produce disease-specific lung progenitor cells from human Cystic Fibrosis induced pluripotent stem cells (iPSCs),creating a platform for dissecting human lung disease. These disease-specific human lung progenitors formed respiratory epithelium when subcutaneously engrafted into immunodeficient mice.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Hendrickson PG et al. (MAY 2017)
Nature genetics
Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons.
To better understand transcriptional regulation during human oogenesis and preimplantation development,we defined stage-specific transcription,which highlighted the cleavage stage as being highly distinctive. Here,we present multiple lines of evidence that a eutherian-specific multicopy retrogene,DUX4,encodes a transcription factor that activates hundreds of endogenous genes (for example,ZSCAN4,KDM4E and PRAMEF-family genes) and retroviral elements (MERVL/HERVL family) that define the cleavage-specific transcriptional programs in humans and mice. Remarkably,mouse Dux expression is both necessary and sufficient to convert mouse embryonic stem cells (mESCs) into 2-cell-embryo-like ('2C-like') cells,measured here by the reactivation of '2C' genes and repeat elements,the loss of POU5F1 (also known as OCT4) protein and chromocenters,and the conversion of the chromatin landscape (as assessed by transposase-accessible chromatin using sequencing (ATAC-seq)) to a state strongly resembling that of mouse 2C embryos. Thus,we propose mouse DUX and human DUX4 as major drivers of the cleavage or 2C state.
View Publication