Miyoshi H et al. (JAN 1999)
Science (New York,N.Y.) 283 5402 682--6
Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors.
Efficient gene transfer into human hematopoietic stem cells (HSCs) is an important goal in the study of the hematopoietic system as well as for gene therapy of hematopoietic disorders. A lentiviral vector based on the human immunodeficiency virus (HIV) was able to transduce human CD34+ cells capable of stable,long-term reconstitution of nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. High-efficiency transduction occurred in the absence of cytokine stimulation and resulted in transgene expression in multiple lineages of human hematopoietic cells for up to 22 weeks after transplantation.
View Publication
Delivery of Functional Anti-miR-9 by Mesenchymal Stem Cellderived Exosomes to Glioblastoma Multiforme Cells Conferred Chemosensitivity
Glioblastoma multiforme (GBM),the most common and lethal tumor of the adult brain,generally shows chemo- and radioresistance. MicroRNAs (miRs) regulate physiological processes,such as resistance of GBM cells to temozolomide (TMZ). Although miRs are attractive targets for cancer therapeutics,the effectiveness of this approach requires targeted delivery. Mesenchymal stem cells (MSCs) can migrate to the sites of cancers,including GBM. We report on an increase in miR-9 in TMZ-resistant GBM cells. miR-9 was involved in the expression of the drug efflux transporter,P-glycoprotein. To block miR-9,methods were developed with Cy5-tagged anti-miR-9. Dye-transfer studies indicated intracellular communication between GBM cells and MSCs. This occurred by gap junctional intercellular communication and the release of microvesicles. In both cases,anti-miR-9 was transferred from MSCs to GBM cells. However,the major form of transfer occurred with the microvesicles. The delivery of anti-miR-9 to the resistant GBM cells reversed the expression of the multidrug transporter and sensitized the GBM cells to TMZ,as shown by increased cell death and caspase activity. The data showed a potential role for MSCs in the functional delivery of synthetic anti-miR-9 to reverse the chemoresistance of GBM cells.Molecular Therapy-Nucleic Acids (2013) 2,e126; doi:10.1038/mtna.2013.60; published online 1 October 2013.
View Publication
产品类型:
产品号#:
05750
05751
产品名:
NeuroCult™ NS-A 基础培养基(人)
NeuroCult™ NS-A 扩增试剂盒(人)
Guye P et al. (JAN 2015)
Nature Communications 7 1--12
Genetically engineering self-organization of human pluripotent stem cells into a liver bud-like tissue using Gata6
Human induced pluripotent stem cells (hiPSCs) have potential for personalized and regenerative medicine. While most of the methods using these cells have focused on deriving homogenous populations of specialized cells,there has been modest success in producing hiPSC-derived organotypic tissues or organoids. Here we present a novel approach for generating and then co-differentiating hiPSC-derived progenitors. With a genetically engineered pulse of GATA-binding protein 6 (GATA6) expression,we initiate rapid emergence of all three germ layers as a complex function of GATA6 expression levels and tissue context. Within 2 weeks we obtain a complex tissue that recapitulates early developmental processes and exhibits a liver bud-like phenotype,including haematopoietic and stromal cells as well as a neuronal niche. Collectively,our approach demonstrates derivation of complex tissues from hiPSCs using a single autologous hiPSCs as source and generates a range of stromal cells that co-develop with parenchymal cells to form tissues.
View Publication
产品类型:
产品号#:
04434
04444
04464
05850
05857
05870
05875
07923
07920
36254
85850
85857
85870
85875
05270
05275
07922
产品名:
MethoCult™H4434经典
MethoCult™H4434经典
MethoCult™ H4434 Classic启动试剂盒套装
Dispase (1 U/mL)
ACCUTASE™
DMEM/F-12 with 15 mM HEPES
mTeSR™1
mTeSR™1
STEMdiff™ APEL™2 培养基
STEMdiff™ APEL™2 培养基
ACCUTASE™
A. Reuter et al. ( 2015)
The Journal of Immunology 194 2696-2705
Criteria for Dendritic Cell Receptor Selection for Efficient Antibody-Targeted Vaccination
Ab-targeted vaccination involves targeting a receptor of choice expressed by dendritic cells (DCs) with Ag-coupled Abs. Currently,there is little consensus as to which criteria determine receptor selection to ensure superior Ag presentation and immunity. In this study,we investigated parameters of DC receptor internalization and determined how they impact Ag presentation outcomes. First,using mixed bone marrow chimeras,we established that Ag-targeted,but not nontargeted,DCs are responsible for Ag presentation in settings of Ab-targeted vaccination in vivo. Next,we analyzed parameters of DEC205 (CD205),Clec9A,CD11c,CD11b,and CD40 endocytosis and obtained quantitative measurements of internalization speed,surface turnover,and delivered Ag load. Exploiting these parameters in MHC class I (MHC I) and MHC class II (MHC II) Ag presentation assays,we showed that receptor expression level,proportion of surface turnover,or speed of receptor internalization did not impact MHC I or MHC II Ag presentation efficiency. Furthermore,the Ag load delivered to DCs did not correlate with the efficiency of MHC I or MHC II Ag presentation. In contrast,targeting Ag to CD8(+) or CD8(-) DCs enhanced MHC I or MHC II Ag presentation,respectively. Therefore,receptor expression levels,speed of internalization,and/or the amount of Ag delivered can be excluded as major determinants that dictate Ag presentation efficiency in setting of Ab-targeted vaccination.
View Publication
产品类型:
产品号#:
19251
19251RF
产品名:
EasySep™人Pan-DC预富集试剂盒
RoboSep™ 人Pan-DC预富集试剂盒含滤芯吸头
Bull ND and Bartlett PF (NOV 2005)
The Journal of neuroscience : the official journal of the Society for Neuroscience 25 47 10815--21
The adult mouse hippocampal progenitor is neurogenic but not a stem cell.
The aim of this investigation was to characterize the proliferative precursor cells in the adult mouse hippocampal region. Given that a very large number of new hippocampal cells are generated over the lifetime of an animal,it is predicted that a neural stem cell is ultimately responsible for maintaining this genesis. Although it is generally accepted that a proliferative precursor resides within the hippocampus,contradictory reports exist regarding the classification of this cell. Is it a true stem cell or a more limited progenitor? Using a strict functional definition of a neural stem cell and a number of in vitro assays,we report that the resident hippocampal precursor is a progenitor capable of proliferation and multipotential differentiation but is unable to self-renew and thus proliferate indefinitely. Furthermore,the mitogen FGF-2 stimulates proliferation of these cells to a greater extent than epidermal growth factor (EGF). In addition,we found that BDNF was essential for the production of neurons from the hippocampal progenitor cells,being required during proliferation to trigger neuronal fate. In contrast,a bona fide neural stem cell was identified in the lateral wall of the lateral ventricle surrounding the hippocampus. Interestingly,EGF proved to be the stronger mitogenic factor for this cell,which was clearly a different precursor from the resident hippocampal progenitor. These results suggest that the stem cell ultimately responsible for adult hippocampal neurogenesis resides outside the hippocampus,producing progenitor cells that migrate into the neurogenic zones and proliferate to produce new neurons and glia.
View Publication
产品类型:
产品号#:
05700
05701
05702
05740
产品名:
NeuroCult™ 基础培养基(小鼠&大鼠)
NeuroCult™ 扩增添加物 (小鼠&大鼠)
NeuroCult™ 扩增试剂盒 (小鼠&大鼠)
Foti SB et al. (OCT 2013)
International Journal of Developmental Neuroscience 31 6 434--447
HDAC inhibitors dysregulate neural stem cell activity in the postnatal mouse brain
The mammalian central nervous system (CNS) undergoes significant expansion postnatally,producing astrocytes,oligodendrocytes and inhibitory neurons to modulate the activity of neural circuits. This is coincident in humans with the emergence of pediatric epilepsy,a condition commonly treated with valproate/valproic acid (VPA),a potent inhibitor of histone deacetylases (HDACs). The sequential activity of specific HDACs,however,may be essential for the differentiation of distinct subpopulations of neurons and glia. Here,we show that different subsets of CNS neural stem cells (NSCs) and progenitors switch expression of HDAC1 and HDAC2 as they commit to a neurogenic lineage in the subventricular zone (SVZ) and dentate gyrus (DG). The administration of VPA for only one week from P7-P14,combined with sequential injections of thymidine analogs reveals that VPA stimulates a significant and differential decrease in the production and differentiation of progeny of NSCs in the DG,rostral migratory stream (RMS),and olfactory bulb (OB). Cross-fostering VPA-treated mice revealed,however,that a postnatal failure to thrive induced by VPA treatment had a greater effect on DG neurogenesis than VPA action directly. By one month after VPA,OB interneuron genesis was significantly and differentially reduced in both periglomerular and granule neurons. Using neurosphere assays to test if VPA directly regulates NSC activity,we found that short term treatment with VPA in vivo reduced neurosphere numbers and size,a phenotype that was also obtained in neurospheres from control mice treated with VPA and an alternative HDAC inhibitor,Trichostatin A (TSA) at 0 and 3 days in vitro (DIV). Collectively,these data show that clinically used HDAC inhibitors like VPA and TSA can perturb postnatal neurogenesis; and their use should be carefully considered,especially in individuals whose brains are actively undergoing key postnatal time windows of development.
View Publication
产品类型:
产品号#:
05700
05701
05702
产品名:
NeuroCult™ 基础培养基(小鼠&大鼠)
NeuroCult™ 扩增添加物 (小鼠&大鼠)
NeuroCult™ 扩增试剂盒 (小鼠&大鼠)
S. Nandagopal et al. (feb 2022)
Cancer immunology research 10 2 245--258
C3aR Signaling Inhibits NK-cell Infiltration into the Tumor Microenvironment in Mouse Models.
Many solid tumors have low levels of cytotoxic CD56dim natural killer (NK) cells,suggesting that CD56dim NK-cell exclusion from the tumor microenvironment (TME) contributes to the decreased response rate of immunotherapy. Complement component 3a (C3a) is known for its tumor-promoting and immunosuppressive roles in solid tumors. Previous reports have implicated the involvement of the C3a receptor (C3aR) in immune cell trafficking into the TME. C3aR is predominantly expressed on the surface of activated cytotoxic NK cells,but a specific role for C3aR in NK-cell biology has not been investigated. Because solid tumors generate elevated C3a and have decreased NK-cell infiltration,we hypothesized that C3aR might play a role in cytotoxic NK-cell recruitment into the TME. Our results indicate that blocking C3aR signaling in NK cells increased NK-cell infiltration into the TME in mouse models and led to tumor regression. Because the critical lymphocyte trafficking integrin LFA-1 orchestrates the migration of activated NK cells,we wanted to gain insight into the interaction between C3aR signaling and LFA-1. Our results demonstrated that direct interaction between C3aR and LFA-1,which led to a high-affinity LFA-1 conformation,decreased NK-cell infiltration into the TME. We propose that approaches to enhance cytotoxic NK-cell infiltration into the TME,through either disrupting C3a and C3aR interaction or inhibiting the formation of high-affinity LFA-1,represent a new strategy to improve the efficiency of immunotherapy for cancer treatment.
View Publication
产品类型:
产品号#:
17955
17955RF
100-0960
产品名:
EasySep™人NK细胞分选试剂盒
RoboSep™ 人NK细胞分选试剂盒
EasySep™人NK细胞分离试剂盒
(Dec 2024)
Pathogens and Disease 82
Characterization of beta2-adrenergic receptor knockout mouse model during Chlamydia muridarum genital infection
AbstractChlamydia genital infection caused by Chlamydia trachomatis is the most common bacterial sexually transmitted disease worldwide. A mouse model has been developed in our laboratory to better understand the effect of cold-induced stress on chlamydia genital infection and immune response. However,the stress mechanism affecting the host response to Chlamydia muridarum genital infection remains unclear. Here,we demonstrate a role for the beta2-adrenergic receptor (β2-AR),which binds noradrenaline and modulates the immune response against chlamydia genital infection in a mouse model. A successful β2-AR homozygous knockout (KO) mouse model was used to study the infection and analyze the immune response. Our data show that stressed mice lacking the β2-AR are less susceptible to C. muridarum genital infection than controls. A correlation was obtained between lower organ load and higher interferon-gamma production by CD4+ and CD8+ cells of the KO mice. Furthermore,exposure of CD4+ T cells to noradrenaline alters the production of cytokines in mice during C. muridarum genital infection. This study suggests that the blockade of β2-AR signaling could be used to increase resistance to chlamydia genital infection. We value the β2-AR KO as a viable model that can provide reproducible results in investigating medical research,including chlamydia genital infection. Deficiency in a receptor leads to a reduced disease of chlamydia in a mouse model.
View Publication
Stadtfeld M et al. (MAR 2008)
Cell stem cell 2 3 230--40
Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse.
Ectopic expression of the transcription factors Oct4,Sox2,c-Myc,and Klf4 in fibroblasts generates induced pluripotent stem (iPS) cells. Little is known about the nature and sequence of molecular events accompanying nuclear reprogramming. Using doxycycline-inducible vectors,we have shown that exogenous factors are required for about 10 days,after which cells enter a self-sustaining pluripotent state. We have identified markers that define cell populations prior to and during this transition period. While downregulation of Thy1 and subsequent upregulation of SSEA-1 occur at early time points,reactivation of endogenous Oct4,Sox2,telomerase,and the silent X chromosome mark late events in the reprogramming process. Cell sorting with these markers allows for a significant enrichment of cells with the potential to become iPS cells. Our results suggest that factor-induced reprogramming is a gradual process with defined intermediate cell populations that contain the majority of cells poised to become iPS cells.
View Publication
产品类型:
产品号#:
72742
产品名:
Doxycycline (Hyclate)
Ingersoll MA et al. (JAN 2010)
Blood 115 3 e10--9
Comparison of gene expression profiles between human and mouse monocyte subsets.
Blood of both humans and mice contains 2 main monocyte subsets. Here,we investigated the extent of their similarity using a microarray approach. Approximately 270 genes in humans and 550 genes in mice were differentially expressed between subsets by 2-fold or more. More than 130 of these gene expression differences were conserved between mouse and human monocyte subsets. We confirmed numerous of these differences at the cell surface protein level. Despite overall conservation,some molecules were conversely expressed between the 2 species' subsets,including CD36,CD9,and TREM-1. Other differences included a prominent peroxisome proliferator-activated receptor gamma (PPARgamma) signature in mouse monocytes,which is absent in humans,and strikingly opposed patterns of receptors involved in uptake of apoptotic cells and other phagocytic cargo between human and mouse monocyte subsets. Thus,whereas human and mouse monocyte subsets are far more broadly conserved than currently recognized,important differences between the species deserve consideration when models of human disease are studied in mice.
View Publication
产品类型:
产品号#:
15028
15068
产品名:
RosetteSep™ 人单核细胞富集抗体混合物
RosetteSep™人单核细胞富集抗体混合物
Giassi LJ et al. (AUG 2008)
Experimental biology and medicine (Maywood,N.J.) 233 8 997--1012
Expanded CD34+ human umbilical cord blood cells generate multiple lymphohematopoietic lineages in NOD-scid IL2rgamma(null) mice.
Umbilical cord blood (UCB) is increasingly being used for human hematopoietic stem cell (HSC) transplantation in children but often requires pooling multiple cords to obtain sufficient numbers for transplantation in adults. To overcome this limitation,we have used an ex vivo two-week culture system to expand the number of hematopoietic CD34(+) cells in cord blood. To assess the in vivo function of these expanded CD34(+) cells,cultured human UCB containing 1 x 10(6) CD34(+) cells were transplanted into conditioned NOD-scid IL2rgamma(null) mice. The expanded CD34(+) cells displayed short- and long-term repopulating cell activity. The cultured human cells differentiated into myeloid,B-lymphoid,and erythroid lineages,but not T lymphocytes. Administration of human recombinant TNFalpha to recipient mice immediately prior to transplantation promoted human thymocyte and T-cell development. These T cells proliferated vigorously in response to TCR cross-linking by anti-CD3 antibody. Engrafted TNFalpha-treated mice generated antibodies in response to T-dependent and T-independent immunization,which was enhanced when mice were co-treated with the B cell cytokine BLyS. Ex vivo expanded CD34(+) human UCB cells have the capacity to generate multiple hematopoietic lineages and a functional human immune system upon transplantation into TNFalpha-treated NOD-scid IL2rgamma(null) mice.
View Publication