Sessarego N et al. (MAR 2008)
Haematologica 93 3 339--46
Multipotent mesenchymal stromal cells from amniotic fluid: solid perspectives for clinical application.
BACKGROUND: Mesenchymal stromal cells are multipotent cells considered to be of great promise for use in regenerative medicine. However,the cell dose may be a critical factor in many clinical conditions and the yield resulting from the ex vivo expansion of mesenchymal stromal cells derived from bone marrow may be insufficient. Thus,alternative sources of mesenchymal stromal cells need to be explored. In this study,mesenchymal stromal cells were successfully isolated from second trimester amniotic fluid and analyzed for chromosomal stability to validate their safety for potential utilization as a cell therapy product. DESIGN AND METHODS: Mesenchymal stromal cells were expanded up to the sixth passage starting from amniotic fluid using different culture conditions to optimize large-scale production. RESULTS: The highest number of mesenchymal stromal cells derived from amniotic fluid was reached at a low plating density; in these conditions the expansion of mesenchymal stromal cells from amniotic fluid was significantly greater than that of adult bone marrow-derived mesenchymal stromal cells. Mesenchymal stromal cells from amniotic fluid represent a relatively homogeneous population of immature cells with immunosuppressive properties and extensive proliferative potential. Despite their high proliferative capacity in culture,we did not observe any karyotypic abnormalities or transformation potential in vitro nor any tumorigenic effect in vivo. CONCLUSIONS: Fetal mesenchymal stromal cells can be extensively expanded from amniotic fluid,showing no karyotypic abnormalities or transformation potential in vitro and no tumorigenic effect in vivo. They represent a relatively homogeneous population of immature mesenchymal stromal cells with long telomeres,immunosuppressive properties and extensive proliferative potential. Our results indicate that amniotic fluid represents a rich source of mesenchymal stromal cells suitable for banking to be used when large amounts of cells are required.
View Publication
产品类型:
产品号#:
05401
05402
05411
产品名:
MesenCult™ MSC基础培养基 (人)
MesenCult™ MSC 刺激补充剂(人)
MesenCult™ 增殖试剂盒(人)
R. I. McGeachan et al. (Apr 2025)
Nature Communications 16
Divergent actions of physiological and pathological amyloid-β on synapses in live human brain slice cultures
In Alzheimer’s disease,amyloid beta (Aβ) and tau pathology are thought to drive synapse loss. However,there is limited information on how endogenous levels of tau,Aβ and other biomarkers relate to patient characteristics,or how manipulating physiological levels of Aβ impacts synapses in living adult human brain. Using live human brain slice cultures,we report that Aβ 1-40 and tau release levels vary with donor age and brain region,respectively. Release of other biomarkers such as KLK-6,NCAM-1,and Neurogranin vary between brain region,while TDP-43 and NCAM-1 release is impacted by sex. Pharmacological manipulation of Aβ in either direction results in a loss of synaptophysin puncta,with increased physiological Aβ triggering potentially compensatory synaptic transcript changes. In contrast,treatment with Aβ-containing Alzheimer’s disease brain extract results in post-synaptic Aβ uptake and pre-synaptic puncta loss without affecting synaptic transcripts. These data reveal distinct effects of physiological and pathological Aβ on synapses in human brain tissue. Subject terms: Alzheimer's disease,Alzheimer's disease
View Publication
产品类型:
产品号#:
05790
产品名:
BrainPhys™神经元培养基
T. B. Levring et al. (nov 2019)
Scientific reports 9 1 16725
Tumor necrosis factor induces rapid down-regulation of TXNIP in human T cells.
In addition to antigen-driven signals,T cells need co-stimulatory signals for robust activation. Several receptors,including members of the tumor necrosis factor receptor superfamily (TNFRSF),can deliver co-stimulatory signals to T cells. Thioredoxin interacting protein (TXNIP) is an important inhibitor of glucose uptake and cell proliferation,but it is unknown how TXNIP is regulated in T cells. The aim of this study was to determine expression levels and regulation of TXNIP in human T cells. We found that na{\{i}}ve T cells express high levels of TXNIP and that treatment of blood samples with TNF results in rapid down-regulation of TXNIP in the T cells. TNF-induced TXNIP down-regulation correlated with increased glucose uptake. Furthermore we found that density gradient centrifugation (DGC) induced down-regulation of TXNIP. We demonstrate that DGC induced TNF production that paralleled the TXNIP down-regulation. Treatment of blood with toll-like receptor (TLR) ligands induced TNF production and TXNIP down-regulation suggesting that damage-associated molecular patterns (DAMPs) such as endogenous TLR ligands released during DGC play a role in DGC-induced TXNIP down-regulation. Finally we demonstrate that TNF-induced TXNIP down-regulation is dependent on caspase activity and is caused by caspase-mediated cleavage of TXNIP."
View Publication
产品类型:
产品号#:
06005
产品名:
IntestiCult™ 肠道类器官生长培养基 (小鼠)
Jamieson CHM et al. (APR 2006)
Proceedings of the National Academy of Sciences of the United States of America 103 16 6224--9
The JAK2 V617F mutation occurs in hematopoietic stem cells in polycythemia vera and predisposes toward erythroid differentiation.
Although a large proportion of patients with polycythemia vera (PV) harbor a valine-to-phenylalanine mutation at amino acid 617 (V617F) in the JAK2 signaling molecule,the stage of hematopoiesis at which the mutation arises is unknown. Here we isolated and characterized hematopoietic stem cells (HSC) and myeloid progenitors from 16 PV patient samples and 14 normal individuals,testing whether the JAK2 mutation could be found at the level of stem or progenitor cells and whether the JAK2 V617F-positive cells had altered differentiation potential. In all PV samples analyzed,there were increased numbers of cells with a HSC phenotype (CD34+CD38-CD90+Lin-) compared with normal samples. Hematopoietic progenitor assays demonstrated that the differentiation potential of PV was already skewed toward the erythroid lineage at the HSC level. The JAK2 V617F mutation was detectable within HSC and their progeny in PV. Moreover,the aberrant erythroid potential of PV HSC was potently inhibited with a JAK2 inhibitor,AG490.
View Publication
产品类型:
产品号#:
04435
04445
产品名:
MethoCult™H4435富集
MethoCult™H4435富集
Qian H et al. (OCT 2007)
Blood 110 7 2399--407
Distinct roles of integrins alpha6 and alpha4 in homing of fetal liver hematopoietic stem and progenitor cells.
Homing of hematopoietic stem cells (HSCs) into the bone marrow (BM) is a prerequisite for establishment of hematopoiesis during development and following transplantation. However,the molecular interactions that control homing of HSCs,in particular,of fetal HSCs,are not well understood. Herein,we studied the role of the alpha6 and alpha4 integrin receptors for homing and engraftment of fetal liver (FL) HSCs and hematopoietic progenitor cells (HPCs) to adult BM by using integrin alpha6 gene-deleted mice and function-blocking antibodies. Both integrins were ubiquitously expressed in FL Lin(-)Sca-1(+)Kit(+) (LSK) cells. Deletion of integrin alpha6 receptor or inhibition by a function-blocking antibody inhibited FL LSK cell adhesion to its extracellular ligands,laminins-411 and -511 in vitro,and significantly reduced homing of HPCs to BM. In contrast,the anti-integrin alpha6 antibody did not inhibit BM homing of HSCs. In agreement with this,integrin alpha6 gene-deleted FL HSCs did not display any homing or engraftment defect compared with wild-type littermates. In contrast,inhibition of integrin alpha4 receptor by a function-blocking antibody virtually abrogated homing of both FL HSCs and HPCs to BM,indicating distinct functions for integrin alpha6 and alpha4 receptors during homing of fetal HSCs and HPCs.
View Publication
产品类型:
产品号#:
03134
产品名:
MethoCult™M3134
Singbrant S et al. (JUN 2010)
Blood 115 23 4689--98
Canonical BMP signaling is dispensable for hematopoietic stem cell function in both adult and fetal liver hematopoiesis, but essential to preserve colon architecture.
Numerous publications have described the importance of bone morphogenetic protein (BMP) signaling in the specification of hematopoietic tissue in developing embryos. Here we investigate the full role of canonical BMP signaling in both adult and fetal liver hematopoiesis using conditional knockout strategies because conventional disruption of components of the BMP signaling pathway result in early death of the embryo. By targeting both Smad1 and Smad5,we have generated a double-knockout mouse with complete disruption of canonical BMP signaling. Interestingly,concurrent deletion of Smad1 and Smad5 results in death because of extrahematopoietic pathologic changes in the colon. However,Smad1/Smad5-deficient bone marrow cells can compete normally with wild-type cells and display unaffected self-renewal and differentiation capacity when transplanted into lethally irradiated recipients. Moreover,although BMP receptor expression is increased in fetal liver,fetal liver cells deficient in both Smad1 and Smad5 remain competent to long-term reconstitute lethally irradiated recipients in a multilineage manner. In conclusion,canonical BMP signaling is not required to maintain either adult or fetal liver hematopoiesis,despite its crucial role in the initial patterning of hematopoiesis in early embryonic development.
View Publication
产品类型:
产品号#:
03231
09600
09650
产品名:
MethoCult™M3231
StemSpan™ SFEM
StemSpan™ SFEM
Laliberté et al. (JAN 1992)
Cancer chemotherapy and pharmacology 30 1 7--11
Potent inhibitors for the deamination of cytosine arabinoside and 5-aza-2'-deoxycytidine by human cytidine deaminase.
Deamination of the nucleoside analogues ARA-C and 5-AZA-CdR by CR deaminase results in a loss of antileukemic activity. To prevent the inactivation of these analogues,inhibitors of CR deaminase may prove to be useful agents. In the present study we investigated the effects of the deaminase inhibitors Zebularine,5-F-Zebularine,and diazepinone riboside on the deamination of CR,ARA-C,and 5-AZA-CdR using highly purified human CR deaminase (EC 3.5.4.5). These inhibitors produced a competitive type of inhibition with each substrate,the potency of which followed the patterns diazepinone riboside greater than 5-F-Zebularine and THU greater than Zebularine. 5-AZA-CdR was more sensitive than ARA-C to the inhibition produced by these deaminase inhibitors. The inhibition constants for diazepinone riboside lay in the range of 5-15 nM,suggesting that this inhibitor could be an excellent candidate for use in combination chemotherapy with either ARA-C or 5-AZA-CdR in patients with leukemia.
View Publication
产品类型:
产品号#:
72902
产品名:
Zebularine
Tasnim F et al. (MAY 2016)
Molecular Pharmaceutics 13 6 1947--1957
Functionally Enhanced Human Stem Cell Derived Hepatocytes in Galactosylated Cellulosic Sponges for Hepatotoxicity Testing.
Pluripotent stem cell derived hepatocyte-like cells (hPSC-HLCs) are an attractive alternative to primary human hepatocytes (PHHs) used in applications ranging from therapeutics to drug safety testing studies. It would be critical to improve and maintain mature hepatocyte functions of the hPSC-HLCs,especially for long-term studies. If 3D culture systems were to be used for such purposes,it would be important that the system can support formation and maintenance of optimal-sized spheroids for long periods of time,and can also be directly deployed in liver drug testing assays. We report the use of 3-dimensional (3D) cellulosic scaffold system for the culture of hPSC-HLCs. The scaffold has a macroporous network which helps to control the formation and maintenance of the spheroids for weeks. Our results show that culturing hPSC-HLCs in 3D cellulosic scaffolds increases functionality,as demonstrated by improved urea production and hepatic marker expression. In addition,hPSC-HLCs in the scaffolds exhibit a more mature phenotype,as shown by enhanced cytochrome P450 activity and induction. This enables the system to show a higher sensitivity to hepatotoxicants and a higher degree of similarity to PHHs when compared to conventional 2D systems. These results suggest that 3D cellulosic scaffolds are ideal for the long-term cultures needed to mature hPSC-HLCs. The mature hPSC-HLCs with improved cellular function can be continually maintained in the scaffolds and directly used for hepatotoxicity assays,making this system highly attractive for drug testing applications.
View Publication
A Micropatterned Human Pluripotent Stem Cell-Based Ventricular Cardiac Anisotropic Sheet for Visualizing Drug-Induced Arrhythmogenicity.
A novel cardiomimetic biohybrid material,termed as the human ventricular cardiac anisotropic sheet (hvCAS) is reported. Well-characterized human pluripotent stem-cell-derived ventricular cardiomyocytes are strategically aligned to reproduce key electrophysiological features of native human ventricle,which,along with specific selection criteria,allows for a direct visualization of arrhythmic spiral re-entry and represents a revolutionary tool to assess preclinical drug-induced arrhythmogenicity.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
(Jul 2025)
Frontiers in Pharmacology 16 3
Machine learning analysis of ARVC informed by sodium channel protein-based interactome networks
BackgroundArrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited cardiac disorder characterized by sodium channel dysfunction. However,the clinical management of ARVC remains challenging. Identifying novel compounds for the treatment of ARVC is crucial for advancing drug development.PurposeIn this study,we aim to identify novel compounds for treating ARVC.MethodsMachine learning (ML) models were constructed using proteins analyzed from the scRNA-seq data of ARVC rats and their corresponding protein-protein interaction (PPI) network to predict binding affinity (BA). To validate these predictions,a series of experiments in cardiac organoids were conducted,including Western blotting,ELISA,MEA,and Masson staining to assess the effects of these compounds.ResultsWe first discovered and identified SCN5A as the most significantly affected sodium channel protein in ARVC. ML models predicted that Kaempferol binds to SCN5A with high affinity. In vitro experiments further confirmed that Kaempferol exerted therapeutic effects in ARVC.ConclusionThis study presents a novel approach for identifying potential compounds to treat ARVC. By integrating ML modeling with organoid validation,our platform provides valuable support in addressing the public health challenges posed by ARVC,with broad application prospects. Kaempferol shows promise as a lead compound for ARVC treatment. Graphical Abstract
Detection and verification processes for ARVC target proteins are shown. The left panel includes a rat and heart diagram for ARVC,followed by ScRNA-seq data and a PPI network. The right panel describes experiments with cardiac organoids,focusing on cell viability,protein expression,heart failure markers,myocardial fibrosis,and electrophysiologic function. The bottom includes ML model construction,a heatmap for BA prediction,molecular docking,and dynamic simulation.
View Publication
产品类型:
产品号#:
100-0276
100-1130
产品名:
mTeSR™ Plus
mTeSR™ Plus
(Mar 2025)
Frontiers in Molecular Neuroscience 18
The restoration of REST inhibits reactivity of Down syndrome iPSC-derived astrocytes
IntroductionAccumulating evidence indicates that the increased presence of astrocytes is fundamentally linked to the neurological dysfunctions observed in individuals with Down syndrome (DS). REST (RE1-silencing transcription factor),as a chromatin modifier,regulates 15,450 genes in humans. REST is a key regulatory element that governs astrocyte differentiation,development,and the maintenance of their physiological functions. The downregulation of REST may disrupt the homeostatic balance of astrocytes in DS.MethodsThis study aims to elucidate the role of REST in DS-astrocytes through comprehensive transcriptomic analysis and experimental validation.ResultsTranscriptomic analysis identified that REST-targeted differentially expressed genes (DEGs) in DS astrocytes are enriched in pathways associated with inflammatory response. Notably,our findings in astrocytes derived from DS human induced pluripotent stem cells (hiPSCs) show that the loss of nucleus REST leads to an upregulation of inflammatory mediators and markers indicative of the presence of reactive astrocytes. Lithium treatment,which restored nucleus REST in trisomic astrocytes,significantly suppressed the expression of these inflammatory mediators and reactive astrocyte markers.DiscussionThese findings suggest that REST is pivotal in modulating astrocyte functionality and reactivity in DS. The loss of REST in DS-astrocytes prompts the formation of reactive astrocytes,thereby compromising central nervous system homeostasis. Lithium treatment possesses the potential to rescue astrocyte reactivity in DS by restoring nucleus REST expression.
View Publication
产品类型:
产品号#:
100-0276
100-1130
产品名:
mTeSR™ Plus
mTeSR™ Plus
(May 2025)
Stem Cells Translational Medicine 14 6
DLK1-expressing neural progenitor cells promote tissue repair and functional recovery after cervical spinal cord injury
AbstractSpinal cord injury (SCI) elicits a hostile microenvironment characterized by inflammation,gliosis,and disrupted signaling pathways that collectively impede neural repair. Neural progenitor cells (NPCs) represent a promising regenerative approach,yet their survival and differentiation are often compromised in this setting. Here,we investigated whether engineering NPCs to overexpress the Notch pathway modulator Delta-like non-canonical Notch ligand 1 (DLK1) could overcome these limitations and improve functional outcomes after cervical SCI in rats. NPCs were engineered to express DLK1 under a Pax6 promoter-driven expression system,ensuring elevated DLK1 levels during the progenitor state. Following transplantation of DLK1-overexpressing NPCs or control NPCs,we assessed graft survival,lineage differentiation,behavioral performance,and electrophysiological integration over 12 weeks. DLK1-expressing NPCs exhibited significantly greater retention in the injured spinal cord and showed enhanced neuronal differentiation alongside reduced astrocytic commitment compared to controls. Behavioral tests—including forelimb grip strength and CatWalk gait assessments—demonstrated that DLK1-modified NPCs conferred robust improvements in forelimb motor coordination and overall locomotion. Concordantly,electrophysiological recordings revealed increased motor-evoked potential amplitudes and area-under-the-curve values in animals receiving DLK1-transduced NPC grafts,indicative of strengthened synaptic integration within the host motor circuitry. Graphical Abstract
Graphical Abstract
View Publication