Zeng F-Y et al. ( 2010)
Biochemical and biophysical research communications 391 1 1049--1055
Glycogen synthase kinase 3 regulates PAX3-FKHR-mediated cell proliferation in human alveolar rhabdomyosarcoma cells.
Patients with alveolar rhabdomyosarcoma (ARMS) have poorer response to conventional chemotherapy and lower survival rates than those with embryonal RMS (ERMS). To identify compounds that preferentially block the growth of ARMS,we conducted a small-scale screen of 160 kinase inhibitors against the ARMS cell line Rh30 and ERMS cell line RD and identified inhibitors of glycogen synthase kinase 3 (GSK3),including TWS119 as ARMS-selective inhibitors. GSK3 inhibitors inhibited cell proliferation and induced apoptosis more effectively in Rh30 than RD cells. Ectopic expression of fusion protein PAX3-FKHR in RD cells significantly increased their sensitivity to TWS119. Down-regulation of GSK3 by GSK3 inhibitors or siRNA significantly reduced the transcriptional activity of PAX3-FKHR. These results suggest that GSK3 is directly involved in regulating the transcriptional activity of PAX3-FKHR. Also,GSK3 phosphorylated PAX3-FKHR in vitro,suggesting that GSK3 might regulate PAX3-FKHR activity via phosphorylation. These findings support a novel mechanism of PAX3-FKHR regulation by GSK3 and provide a novel strategy to develop GSK inhibitors as anti-ARMS therapies.
View Publication
产品类型:
产品号#:
73512
73514
产品名:
TWS119
TWS119
Lelaidier M et al. (OCT 2015)
Oncotarget 6 30 29440--55
TRAIL-mediated killing of acute lymphoblastic leukemia by plasmacytoid dendritic cell-activated natural killer cells.
Acute lymphoblastic leukemia (ALL) still frequently recurs after hematopoietic stem cell transplantation (HSCT),underscoring the need to improve the graft-versus-leukemia (GvL) effect. Natural killer (NK) cells reconstitute in the first months following HSCT when leukemia burden is at its lowest,but ALL cells have been shown to be resistant to NK cell-mediated killing. We show here that this resistance is overcome by NK cell stimulation with TLR-9-activated plasmacytoid dendritic cells (pDCs). NK cell priming with activated pDCs resulted in TRAIL and CD69 up-regulation on NK cells and IFN-γ production. NK cell activation was dependent on IFN-α produced by pDCs,but was not reproduced by IFN-α alone. ALL killing was further enhanced by inhibition of KIR engagement. We showed that ALL lysis was mainly mediated by TRAIL engagement,while the release of cytolytic granules was involved when ALL expressed NK cell activating receptor ligands. Finally,adoptive transfers of activated-pDCs in ALL-bearing humanized mice delayed the leukemia onset and cure 30% of mice. Our data therefore demonstrate that TLR-9 activated pDCs are a powerful tool to overcome ALL resistance to NK cell-mediated killing and to reinforce the GvL effect of HSCT. These results open new therapeutic avenues to prevent relapse in children with ALL.
View Publication
产品类型:
产品号#:
19062
19062RF
19055
19055RF
产品名:
EasySep™人浆细胞样DC富集试剂盒
RoboSep™ 人浆细胞样DC富集试剂盒含滤芯吸头
EasySep™人NK细胞富集试剂盒
RoboSep™ 人NK细胞富集试剂盒含滤芯吸头
Azari H et al. (JAN 2011)
Journal of visualized experiments : JoVE 56 e3633
Isolation and expansion of human glioblastoma multiforme tumor cells using the neurosphere assay.
Stem-like cells have been isolated in tumors such as breast,lung,colon,prostate and brain. A critical issue in all these tumors,especially in glioblastoma mutliforme (GBM),is to identify and isolate tumor initiating cell population(s) to investigate their role in tumor formation,progression,and recurrence. Understanding tumor initiating cell populations will provide clues to finding effective therapeutic approaches for these tumors. The neurosphere assay (NSA) due to its simplicity and reproducibility has been used as the method of choice for isolation and propagation of many of this tumor cells. This protocol demonstrates the neurosphere culture method to isolate and expand stem-like cells in surgically resected human GBM tumor tissue. The procedures include an initial chemical digestion and mechanical dissociation of tumor tissue,and subsequently plating the resulting single cell suspension in NSA culture. After 7-10 days,primary neurospheres of 150-200 μm in diameter can be observed and are ready for further passaging and expansion.
View Publication
产品类型:
产品号#:
05751
05752
产品名:
NeuroCult™ NS-A 扩增试剂盒(人)
NeuroCult™ NS-A 分化试剂盒 (人)
M. M. Mostafa et al. (nov 2020)
The Journal of biological chemistry jbc.RA120.015755
Genomic determinants implicated in the glucocorticoid-mediated induction of KLF9 in pulmonary epithelial cells.
Ligand-activated glucocorticoid receptor (GR) elicits variable glucocorticoid-modulated transcriptomes in different cell types. However,some genes,including Kr{\{u}}ppel-like factor 9 (KLF9) a putative transcriptional repressor demonstrate conserved responses. We show that glucocorticoids induce KLF9 expression in the human airways in vivo and in differentiated human bronchial epithelial (HBE) cells grown at air-liquid interface (ALI). In A549 and BEAS-2B pulmonary epithelial cells glucocorticoids induce KLF9 expression with similar kinetics to primary HBE cells in submersion culture. A549 and BEAS-2B ChIP-seq data reveal four common glucocorticoid-induced GR binding sites (GBSs). Two GBSs mapped to the 5'-proximal region relative to KLF9 transcription start site (TSS) and two occurred at distal sites. These were all confirmed in primary HBE cells. Global run-on (GRO)-sequencing indicated robust enhancer RNA (eRNA) production from three of these GBSs in BEAS-2B cells. This was confirmed in A549 cells plus submersion and ALI culture of HBE cells. Cloning each GBS into luciferase reporters revealed glucocorticoid-induced activity requiring a glucocorticoid response element (GRE) within each distal GBS. While the proximal GBSs drove modest reporter induction by glucocorticoids this region exhibited basal eRNA production RNA polymerase II enrichment and looping to the TSS plausibly underlying constitutive KLF9 expression. Post-glucocorticoid treatment interactions between distal and proximal GBSs and the TSS correlated with KLF9 induction. CBP/P300 silencing reduced proximal GBS activity but negligibly effected KLF9 expression. Overall a model for glucocorticoid-mediated regulation of KLF9 involving multiple GBSs is depicted. This work unequivocally demonstrates that mechanistic insights gained from cell-lines can translate to physiologically relevant systems."
View Publication
产品类型:
产品号#:
05001
05022
05021
05008
产品名:
PneumaCult™-ALI 培养基
PneumaCult™-ALI 培养基含6.5 mm Transwell®插件
PneumaCult™-ALI 培养基含12 mm Transwell®插件
PneumaCult™交货中
Jasinski M et al. (OCT 2001)
Blood 98 7 2248--55
GATA1-Cre mediates Piga gene inactivation in the erythroid/megakaryocytic lineage and leads to circulating red cells with a partial deficiency in glycosyl phosphatidylinositol-linked proteins (paroxysmal nocturnal hemoglobinuria type II cells).
Patients with paroxysmal nocturnal hemoglobinuria (PNH) have blood cells deficient in glycosyl phosphatidylinositol (GPI)-linked proteins owing to a somatic mutation in the X-linked PIGA gene. To target Piga recombination to the erythroid/megakaryocytic lineage in mice,the Cre/loxP system was used,and Cre was expressed under the transcriptional regulatory sequences of GATA-1. Breeding of GATA1-cre (G) transgenic mice with mice carrying a floxed Piga (L) allele was associated with high embryonic lethality. However,double-transgenic (GL) mice that escaped early recombination looked healthy and were observed for 16 months. Flow cytometric analysis of peripheral blood cells showed that GL mice had up to 100% of red cells deficient in GPI-linked proteins. The loss of GPI-linked proteins on the cell surface occurred late in erythroid differentiation,causing a proportion of red cells to express low residual levels of GPI-linked proteins. Red cells with residual expression of GPI-linked proteins showed an intermediate sensitivity toward complement and thus resemble PNH type II cells in patients with PNH. Recombination of the floxed Piga allele was also detected in cultured megakaryocytes,mast cells,and eosinophils,but not in neutrophils,lymphocytes,or nonhematopoietic tissues. In summary,GATA1-Cre causes high-efficiency Piga gene inactivation in a GATA-1-specific pattern. For the first time,mice were generated that have almost 100% of red cells deficient in GPI-linked proteins. These animals will be valuable to further investigate the consequences of GPI-anchor deficiency on erythroid/megakaryocytic cells.
View Publication
产品类型:
产品号#:
05350
产品名:
Hess DA et al. (MAR 2008)
Stem cells (Dayton,Ohio) 26 3 611--20
Widespread nonhematopoietic tissue distribution by transplanted human progenitor cells with high aldehyde dehydrogenase activity.
Transplanted adult progenitor cells distribute to peripheral organs and can promote endogenous cellular repair in damaged tissues. However,development of cell-based regenerative therapies has been hindered by the lack of preclinical models to efficiently assess multiple organ distribution and difficulty defining human cells with regenerative function. After transplantation into beta-glucuronidase (GUSB)-deficient NOD/SCID/mucopolysaccharidosis type VII mice,we characterized the distribution of lineage-depleted human umbilical cord blood-derived cells purified by selection using high aldehyde dehydrogenase (ALDH) activity with CD133 coexpression. ALDH(hi) or ALDH(hi)CD133+ cells produced robust hematopoietic reconstitution and variable levels of tissue distribution in multiple organs. GUSB+ donor cells that coexpressed human leukocyte antigen (HLA-A,B,C) and hematopoietic (CD45+) cell surface markers were the primary cell phenotype found adjacent to the vascular beds of several tissues,including islet and ductal regions of mouse pancreata. In contrast,variable phenotypes were detected in the chimeric liver,with HLA+/CD45+ cells demonstrating robust GUSB expression adjacent to blood vessels and CD45-/HLA- cells with diluted GUSB expression predominant in the liver parenchyma. However,true nonhematopoietic human (HLA+/CD45-) cells were rarely detected in other peripheral tissues,suggesting that these GUSB+/HLA-/CD45- cells in the liver were a result of downregulated human surface marker expression in vivo,not widespread seeding of nonhematopoietic cells. However,relying solely on continued expression of cell surface markers,as used in traditional xenotransplantation models,may underestimate true tissue distribution. ALDH-expressing progenitor cells demonstrated widespread and tissue-specific distribution of variable cellular phenotypes,indicating that these adult progenitor cells should be explored in transplantation models of tissue damage.
View Publication
产品类型:
产品号#:
01700
01705
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
Ramalho AC et al. (APR 2002)
European cytokine network 13 1 39--45
Estradiol and raloxifene decrease the formation of multinucleate cells in human bone marrow cultures.
Estrogen (E2) deficiency is responsible for increased bone turnover in the postmenopausal period,and it can be prevented by estrogen replacement therapy. The way estrogen acts on bone cells is not fully understood. Human bone marrow cell cultures may be a reliable model for studying the action of steroids on osteoclastogenesis in vitro. We examine the effects of estradiol and Raloxifene,a selective estrogen receptor modulator,on human primary bone marrow cells cultured for 15 days. 17beta-estradiol and Raloxifene significantly decreased the number of tartrate-resistant acid phosphatase multinucleate cells from osteoclast precursors on day 15. Estrogen receptor alpha (ER-alpha) mRNA was present in bone marrow mononuclear cells cultured for 5 days,but there was no estrogen receptor beta (ER-beta) mRNA,suggesting that this effect was mediated by ER-alpha. 15-day cultures no longer contained ER-alpha mRNA,suggesting that estrogen acts on early events of osteoclast differentiation. Finally,10-8 M 17beta-estradiol has no effect on the release of IL-6 and IL-6-sr into the medium of marrow mononuclear cells cultured for 5 or 15 days. Osteoclast apoptosis was not affected by estradiol or Raloxifene after 15 days of culture under our conditions. In conclusion,we have shown that both estradiol and Raloxifene inhibit osteoclast differentiation in human bone marrow mononuclear cultures. The biological effect that can mimic in vivo differentiation could be mediated through ER-alpha.
View Publication
产品类型:
产品号#:
72852
72854
产品名:
Sun AX et al. (AUG 2016)
Cell reports 16 7 1942--1953
Direct Induction and Functional Maturation of Forebrain GABAergic Neurons from Human Pluripotent Stem Cells.
Gamma-aminobutyric acid (GABA)-releasing interneurons play an important modulatory role in the cortex and have been implicated in multiple neurological disorders. Patient-derived interneurons could provide a foundation for studying the pathogenesis of these diseases as well as for identifying potential therapeutic targets. Here,we identified a set of genetic factors that could robustly induce human pluripotent stem cells (hPSCs) into GABAergic neurons (iGNs) with high efficiency. We demonstrated that the human iGNs express neurochemical markers and exhibit mature electrophysiological properties within 6-8 weeks. Furthermore,in vitro,iGNs could form functional synapses with other iGNs or with human-induced glutamatergic neurons (iENs). Upon transplantation into immunodeficient mice,human iGNs underwent synaptic maturation and integration into host neural circuits. Taken together,our rapid and highly efficient single-step protocol to generate iGNs may be useful to both mechanistic and translational studies of human interneurons.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Li H-L et al. (JAN 2016)
Cell death & disease 7 1 e2078
miR-302 regulates pluripotency, teratoma formation and differentiation in stem cells via an AKT1/OCT4-dependent manner.
Pluripotency makes human pluripotent stem cells (hPSCs) promising for regenerative medicine,but the teratoma formation has been considered to be a major obstacle for their clinical applications. Here,we determined that the downregulation of miR-302 suppresses the teratoma formation,hampers the self-renewal and pluripotency,and promotes hPSC differentiation. The underlying mechanism is that the high endogenous expression of miR-302 suppresses the AKT1 expression by directly targeting its 3'UTR and subsequently maintains the pluripotent factor OCT4 at high level. Our findings reveal that miR-302 regulates OCT4 by suppressing AKT1,which provides hPSCs two characteristics related to their potential for clinical applications: the benefit of pluripotency and the hindrance of teratoma formation. More importantly,we demonstrate that miR-302 upregulation cannot lead OCT4 negative human adult mesenchymal stem cells (hMSCs) to acquire the teratoma formation in vivo. Whether miR-302 upregulation can drive hMSCs to acquire a higher differentiation potential is worthy of deep investigation.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
P. Truong et al. (Aug 2024)
Nature Communications 15
TOPORS E3 ligase mediates resistance to hypomethylating agent cytotoxicity in acute myeloid leukemia cells
Hypomethylating agents (HMAs) are frontline therapies for Myelodysplastic Neoplasms (MDS) and Acute Myeloid Leukemia (AML). However,acquired resistance and treatment failure are commonplace. To address this,we perform a genome-wide CRISPR-Cas9 screen in a human MDS-derived cell line,MDS-L,and identify TOPORS as a loss-of-function target that synergizes with HMAs,reducing leukemic burden and improving survival in xenograft models. We demonstrate that depletion of TOPORS mediates sensitivity to HMAs by predisposing leukemic blasts to an impaired DNA damage response (DDR) accompanied by an accumulation of SUMOylated DNMT1 in HMA-treated TOPORS-depleted cells. The combination of HMAs with targeting of TOPORS does not impair healthy hematopoiesis. While inhibitors of TOPORS are unavailable,we show that inhibition of protein SUMOylation with TAK-981 partially phenocopies HMA-sensitivity and DDR impairment. Overall,our data suggest that the combination of HMAs with inhibition of SUMOylation or TOPORS is a rational treatment option for High-Risk MDS (HR-MDS) or AML. Subject terms: Myelodysplastic syndrome,Acute myeloid leukaemia,Sumoylation
View Publication
产品类型:
产品号#:
05150
产品名:
MyeloCult™H5100
L. Chen et al. (sep 2015)
Stem cell research 15 2 281--9
Inhibiting actin depolymerization enhances osteoblast differentiation and bone formation in human stromal stem cells.
Remodeling of the actin cytoskeleton through actin dynamics is involved in a number of biological processes,but its role in human stromal (skeletal) stem cells (hMSCs) differentiation is poorly understood. In the present study,we demonstrated that stabilizing actin filaments by inhibiting gene expression of the two main actin depolymerizing factors (ADFs): Cofilin 1 (CFL1) and Destrin (DSTN) in hMSCs,enhanced cell viability and differentiation into osteoblastic cells (OB) in vitro,as well as heterotopic bone formation in vivo. Similarly,treating hMSC with Phalloidin,which is known to stabilize polymerized actin filaments,increased hMSCs viability and OB differentiation. Conversely,Cytocholasin D,an inhibitor of actin polymerization,reduced cell viability and inhibited OB differentiation of hMSC. At a molecular level,preventing Cofilin phosphorylation through inhibition of LIM domain kinase 1 (LIMK1) decreased cell viability and impaired OB differentiation of hMSCs. Moreover,depolymerizing actin reduced FAK,p38 and JNK activation during OB differentiation of hMSCs,while polymerizing actin enhanced these signaling pathways. Our results demonstrate that the actin dynamic reassembly and Cofilin phosphorylation loop is involved in the control of hMSC proliferation and osteoblasts differentiation.
View Publication