FXYD2 marks and regulates maturity of ? cells via ion channel-mediated signal transduction
Human pancreatic islets regulate organ development and metabolic homeostasis,with dysfunction leading to diabetes. Human pluripotent stem cells (hPSCs) provide a potential alternative source to cadaveric human pancreatic islets for replacement therapy in diabetes. However,human islet-like organoids (HILOs) generated from hPSCs in vitro often exhibit heterogeneous immature phenotypes such as aberrant gene expression and inadequate insulin secretion in response to glucose. Here we show that FXYD Domain Containing Ion Transport Regulator 2 (FXYD2) marks and regulates functional maturation and heterogeneity of generated HILOs,by controlling the ? cell transcriptome necessary for glucose-stimulated insulin secretion (GSIS). Despite its presence in mature ? cells,FXYD2 is diminished in hPSC-derived ?-like cells. Mechanistically,we find that FXYD2 physically interacts with SRC proto-oncogene,non-receptor tyrosine kinase (SRC) protein to regulate FXYD2-SRC-TEAD1 signaling to modulate ? cell transcriptome. We demonstrate that FXYD2High HILOs significantly outperform FXYD2Low counterparts to improve hyperglycemia in STZ-induced diabetic immune deficient mice. These results suggest that FXYD2 marks and regulates human ? cell maturation via channel-sensing signal transduction and that it can be used as a selection marker for functional heterogeneity of stem cell derived human islet organoids. Tacto et al. uncover a key marker that enables the selection of functional,transplantable human islets derived from stem cells,potentially paving the way for more precise and effective diabetes cell therapy.
View Publication
J.-A. Johnson et al. (APR 2018)
Biology open 7 4 bio033944
Fank1 and Jazf1 promote multiciliated cell differentiation in the mouse airway epithelium.
The airways are lined by secretory and multiciliated cells which function together to remove particles and debris from the respiratory tract. The transcriptome of multiciliated cells has been extensively studied,but the function of many of the genes identified is unknown. We have established an assay to test the ability of over-expressed transcripts to promote multiciliated cell differentiation in mouse embryonic tracheal explants. Overexpression data indicated that Fibronectin type 3 and ankyrin repeat domains 1 (Fank1) and JAZF zinc finger 1 (Jazf1) promoted multiciliated cell differentiation alone,and cooperatively with the canonical multiciliated cell transcription factor Foxj1. Moreover,knock-down of Fank1 or Jazf1 in adult mouse airway epithelial cultures demonstrated that these factors are both required for ciliated cell differentiation in vitro This analysis identifies Fank1 and Jazf1 as novel regulators of multiciliated cell differentiation. Moreover,we show that they are likely to function downstream of IL6 signalling and upstream of Foxj1 activity in the process of ciliated cell differentiation. In addition,our in vitro explant assay provides a convenient method for preliminary investigation of over-expression phenotypes in the developing mouse airways.This article has an associated First Person interview with the first author of the paper.
View Publication
产品类型:
产品号#:
05001
05021
05022
05008
产品名:
PneumaCult™-ALI 培养基
PneumaCult™-ALI 培养基含12 mm Transwell®插件
PneumaCult™-ALI 培养基含6.5 mm Transwell®插件
PneumaCult™交货中
J. Min et al. (dec 2019)
Nature communications 10 1 5549
Heterogeneity and dynamics of active Kras-induced dysplastic lineages from mouse corpus stomach.
Dysplasia is considered a key transition state between pre-cancer and cancer in gastric carcinogenesis. However,the cellular or phenotypic heterogeneity and mechanisms of dysplasia progression have not been elucidated. We have established metaplastic and dysplastic organoid lines,derived from Mist1-Kras(G12D) mouse stomach corpus and studied distinct cellular behaviors and characteristics of metaplastic and dysplastic organoids. We also examined functional roles for Kras activation in dysplasia progression using Selumetinib,a MEK inhibitor,which is a downstream mediator of Kras signaling. Here,we report that dysplastic organoids die or show altered cellular behaviors and diminished aggressive behavior in response to MEK inhibition. However,the organoids surviving after MEK inhibition maintain cellular heterogeneity. Two dysplastic stem cell (DSC) populations are also identified in dysplastic cells,which exhibited different clonogenic potentials. Therefore,Kras activation controls cellular dynamics and progression to dysplasia,and DSCs might contribute to cellular heterogeneity in dysplastic cell lineages.
View Publication
产品类型:
产品号#:
10981
产品名:
ImmunoCult™ XF 人T细胞扩增培养基,500 mL
(Jun 2024)
Nature Immunology 25 8
A humanized mouse that mounts mature class-switched, hypermutated and neutralizing antibody responses
Humanized mice are limited in terms of modeling human immunity,particularly with regards to antibody responses. Here we constructed a humanized (THX) mouse by grafting non-γ-irradiated,genetically myeloablated KitW-41J mutant immunodeficient pups with human cord blood CD34+ cells,followed by 17β-estradiol conditioning to promote immune cell differentiation. THX mice reconstitute a human lymphoid and myeloid immune system,including marginal zone B cells,germinal center B cells,follicular helper T cells and neutrophils,and develop well-formed lymph nodes and intestinal lymphoid tissue,including Peyer’s patches,and human thymic epithelial cells. These mice have diverse human B cell and T cell antigen receptor repertoires and can mount mature T cell-dependent and T cell-independent antibody responses,entailing somatic hypermutation,class-switch recombination,and plasma cell and memory B cell differentiation. Upon flagellin or a Pfizer-BioNTech coronavirus disease 2019 (COVID-19) mRNA vaccination,THX mice mount neutralizing antibody responses to Salmonella or severe acute respiratory syndrome coronavirus 2 Spike S1 receptor-binding domain,with blood incretion of human cytokines,including APRIL,BAFF,TGF-β,IL-4 and IFN-γ,all at physiological levels. These mice can also develop lupus autoimmunity after pristane injection. By leveraging estrogen activity to support human immune cell differentiation and maturation of antibody responses,THX mice provide a platform to study the human immune system and to develop human vaccines and therapeutics. Humanized mice have been a valuable tool for modeling human immunology but are limited in their ability to model human antibody responses. Here the authors present their THX humanized mouse that does model human antibody responses and test its suitability for vaccination and autoimmunity studies.
View Publication
产品类型:
产品号#:
17856
17856RF
100-1569
产品名:
EasySep™人CD34正选试剂盒 II
EasySep™人CD34正选试剂盒 II
EasySep™人CD34正选试剂盒 II
Li X et al. (MAR 2009)
Human reproduction (Oxford,England) 24 3 580--9
ROCK inhibitor improves survival of cryopreserved serum/feeder-free single human embryonic stem cells.
BACKGROUND Efficient slow freezing protocols within serum-free and feeder-free culture systems are crucial for the clinical application of human embryonic stem (hES) cells. Frequently,however,hES cells must be cryopreserved as clumps when using conventional slow freezing protocols,leading to lower survival rates during freeze-thaw and limiting their recovery and growth efficiency after thawing,as well as limiting downstream applications that require single cell suspensions. We describe a novel method to increase freeze-thaw survival and proliferation rate of single hES cells in serum-free and feeder-free culture conditions. METHODS hES cells maintained on Matrigel-coated dishes were dissociated into single cells with Accutase and slow freezing. After thawing at 37 degrees C,cells were cultured in mTeSR medium supplemented with 10 microM of Rho-associated kinase inhibitor Y-27632 for 1 day. RESULTS The use of Y-27632 and Accutase significantly increases the survival of single hES cells after thawing compared with a control group (P textless 0.01). Furthermore,by treatment of hES cell aggregates with EGTA to disrupt cell-cell interaction,we show that Y-27632 treatment does not directly affect hES cell apoptosis. Even in the presence of Y-27632,hES cells deficient in cell-cell interaction undergo apoptosis. Y-27632-treated freeze-thawed hES cells retain typical morphology,stable karyotype,expression of pluripotency markers and the potential to differentiate into derivatives of all three germ layers after long-term culture. CONCLUSIONS The method described here allows for cryopreservation of single hES cells in serum-free and feeder-free conditions and therefore we believe this method will be ideal for current and future hES cell applications that are targeted towards a therapeutic end-point.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
72302
72304
72307
72308
85850
85857
85870
85875
100-1044
产品名:
Y-27632(二盐酸盐)
Y-27632(二盐酸盐)
Y-27632(二盐酸盐)
Y-27632(二盐酸盐)
mTeSR™1
mTeSR™1
Y-27632(二盐酸盐)
Armesilla-Diaz A et al. (DEC 2009)
Experimental cell research 315 20 3598--610
p53 regulates the proliferation, differentiation and spontaneous transformation of mesenchymal stem cells.
Mesenchymal stem cells (MSC) have been extensively studied and gained wide popularity due to their therapeutic potential. Spontaneous transformation of MSC,from both human and murine origin,has been reported in many studies. MSC transformation depends on the culture conditions,the origin of the cells and the time on culture; however,the precise biological characteristics involved in this process have not been fully defined yet. In this study,we investigated the role of p53 in the biology and transformation of murine bone marrow (BM)-derived MSC. We demonstrate that the MSC derived from p53KO mice showed an augmented proliferation rate,a shorter doubling time and also morphologic and phenotypic changes,as compared to MSC derived from wild-type animals. Furthermore,the MSC devoid of p53 had an increased number of cells able to generate colonies. In addition,not only proliferation but also MSC differentiation is controlled by p53 since its absence modifies the speed of the process. Moreover,genomic instability,changes in the expression of c-myc and anchorage independent growth were also observed in p53KO MSC. In addition,the absence of p53 implicates the spontaneous transformation of MSC in long-term cultures. Our results reveal that p53 plays a central role in the biology of MSC.
View Publication
Formation of embryoid bodies from human pluripotent stem cells using AggreWell™ plates.
Many human embryonic stem (hES) and induced pluripotent stem (hiPS) cell differentiation protocols begin with the formation of three-dimensional aggregates of cells called embryoid bodies (EBs). Traditional EB formation methods result in a heterogeneous population of EB sizes and shapes,which then undergo heterogeneous differentiation efficiencies. AggreWell(TM)400 and AggreWell(TM)800 use the spin-EB method to force the aggregation of a defined number of cells,thereby controlling EB size and generating a population of uniform EBs. Moreover,the dense array of microwells on the bottom surface of AggreWell(TM)400 provide for the rapid and simple production of thousands of EBs at a time.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Kearns Na et al. (JAN 2014)
Development (Cambridge,England) 141 1 219--223
Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells.
The identification of the trans-acting factors and cis-regulatory modules that are involved in human pluripotent stem cell (hPSC) maintenance and differentiation is necessary to dissect the operating regulatory networks in these processes and thereby identify nodes where signal input will direct desired cell fate decisions in vitro or in vivo. To deconvolute these networks,we established a method to influence the differentiation state of hPSCs with a CRISPR-associated catalytically inactive dCas9 fused to an effector domain. In human embryonic stem cells,we find that the dCas9 effectors can exert positive or negative regulation on the expression of developmentally relevant genes,which can influence cell differentiation status when impinging on a key node in the regulatory network that governs the cell state. This system provides a platform for the interrogation of the underlying regulators governing specific differentiation decisions,which can then be employed to direct cellular differentiation down desired pathways.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Wang X et al. (APR 2014)
PLoS ONE 9 4 e93575
Precise gene modification mediated by TALEN and single-stranded oligodeoxynucleotides in human cells.
The development of human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) facilitates in vitro studies of human disease mechanisms,speeds up the process of drug screening,and raises the feasibility of using cell replacement therapy in clinics. However,the study of genotype-phenotype relationships in ESCs or iPSCs is hampered by the low efficiency of site-specific gene editing. Transcription activator-like effector nucleases (TALENs) spurred interest due to the ease of assembly,high efficiency and faithful gene targeting. In this study,we optimized the TALEN design to maximize its genomic cutting efficiency. We showed that using optimized TALENs in conjunction with single-strand oligodeoxynucleotide (ssODN) allowed efficient gene editing in human cells. Gene mutations and gene deletions for up to 7.8 kb can be accomplished at high efficiencies. We established human tumor cell lines and H9 ESC lines with homozygous deletion of the microRNA-21 (miR-21) gene and miR-9-2 gene. These cell lines provide a robust platform to dissect the roles these genes play during cell differentiation and tumorigenesis. We also observed that the endogenous homologous chromosome can serve as a donor template for gene editing. Overall,our studies demonstrate the versatility of using ssODN and TALEN to establish genetically modified cells for research and therapeutic application.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
(Jul 2024)
Cell & Bioscience 14 6
?-catenin mediates endodermal commitment of human ES cells via distinct transactivation functions
Background?-catenin,acting as the core effector of canonical Wnt signaling pathway,plays a pivotal role in controlling lineage commitment and the formation of definitive endoderm (DE) during early embryonic development. Despite extensive studies using various animal and cell models,the ?-catenin-centered regulatory mechanisms underlying DE formation remain incompletely understood,partly due to the rapid and complex cell fate transitions during early differentiation.ResultsIn this study,we generated new CTNNB1-/- human ES cells (hESCs) using CRISPR-based insertional gene disruption approach and systematically rescued the DE defect in these cells by introducing various truncated or mutant forms of ?-catenin. Our analysis showed that a truncated ?-catenin lacking both N- and C-terminal domains (?N148C) could robustly rescue the DE formation,whereas hyperactive ?-catenin mutants with S33Y mutation or N-terminal deletion (?N90) had limited ability to induce DE lineage. Notably,the ?N148C mutant exhibited significant nuclear translocation that was positively correlated with successful DE rescue. Transcriptomic analysis further uncovered that two weak ?-catenin mutants lacking the C-terminal transactivation domain (CTD) activated primitive streak (PS) genes,whereas the hyperactive ?-catenin mutants activated mesoderm genes.ConclusionOur study uncovered an unconventional regulatory function of ?-catenin through weak transactivation,indicating that the levels of ?-catenin activity determine the lineage bifurcation from mesendoderm into endoderm and mesoderm.Supplementary InformationThe online version contains supplementary material available at 10.1186/s13578-024-01279-5.
View Publication