Xia Y et al. (DEC 2013)
Nature Cell Biology 15 12 1507--1515
Directed differentiation of human pluripotent cells to ureteric bud kidney progenitor-like cells
Diseases affecting the kidney constitute a major health issue worldwide. Their incidence and poor prognosis affirm the urgent need for the development of new therapeutic strategies. Recently,differentiation of pluripotent cells to somatic lineages has emerged as a promising approach for disease modelling and cell transplantation. Unfortunately,differentiation of pluripotent cells into renal lineages has demonstrated limited success. Here we report on the differentiation of human pluripotent cells into ureteric-bud-committed renal progenitor-like cells. The generated cells demonstrated rapid and specific expression of renal progenitor markers on 4-day exposure to defined media conditions. Further maturation into ureteric bud structures was accomplished on establishment of a three-dimensional culture system in which differentiated human cells assembled and integrated alongside murine cells for the formation of chimeric ureteric buds. Altogether,our results provide a new platform for the study of kidney diseases and lineage commitment,and open new avenues for the future application of regenerative strategies in the clinic.
View Publication
Ishikawa T et al. (JAN 2012)
Methods in molecular biology (Clifton,N.J.) 826 103--114
Generation and hepatic differentiation of human iPS cells.
A method for the generation of human induced pluripotent stem (iPS) cells was established. This method employs adenovirus carrying the ecotropic retrovirus receptor mCAT1 and Moloney murine leukemia virus (MMLV)-based retroviral vectors carrying the four transcription factors POU5F1 (OCT3/4),KLF4,SOX2,and MYC (c-Myc) (Masaki H & Ishikawa T Stem Cell Res 1:105-15,2007). The differentiation of human iPS cells into hepatic cells was performed by a stepwise protocol (Song Z et al. Cell Res 19:1233-42,2009). These cells have potential as patient-specific in vitro models for studying disease etiology and could be used in drug discovery programs tailored to deal with genetic variations in drug efficacy and toxicity.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Wang A and Liew CG (NOV 2012)
Current protocols in stem cell biology Chapter 5 SUPPL.23 Unit 5B.2
Genetic manipulation of human induced pluripotent stem cells
Human induced pluripotent stem cells (HIPSC) have tremendous value as a source of autologous cells for cellular transplantation in the treatment of degenerative diseases. The protocols described here address methods for large-scale genetic modification of HIPSCs. The first is an optimized method for transfecting HIPSCs cultured in feeder-free conditions. The second method allows nucleofection of trypsinized HIPSCs at an optimal cell density. Both methods enable robust generation of stable HIPSC transfectants within two weeks. Our protocols are highly reproducible and do not require optimization for individual HIPSC and human embryonic stem cell (HESC) lines.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Pittenger MF et al. (APR 1999)
Science (New York,N.Y.) 284 5411 143--7
Multilineage potential of adult human mesenchymal stem cells.
Human mesenchymal stem cells are thought to be multipotent cells,which are present in adult marrow,that can replicate as undifferentiated cells and that have the potential to differentiate to lineages of mesenchymal tissues,including bone,cartilage,fat,tendon,muscle,and marrow stroma. Cells that have the characteristics of human mesenchymal stem cells were isolated from marrow aspirates of volunteer donors. These cells displayed a stable phenotype and remained as a monolayer in vitro. These adult stem cells could be induced to differentiate exclusively into the adipocytic,chondrocytic,or osteocytic lineages. Individual stem cells were identified that,when expanded to colonies,retained their multilineage potential.
View Publication
产品类型:
产品号#:
72092
72132
72762
72764
产品名:
地塞米松(Dexamethasone)
抗坏血酸(Ascorbic Acid)
IBMX
IBMX
C. Xu et al. (oct 2001)
Nature biotechnology 19 10 971--4
Feeder-free growth of undifferentiated human embryonic stem cells.
Previous studies have shown that maintenance of undifferentiated human embryonic stem (hES) cells requires culture on mouse embryonic fibroblast (MEF) feeders. Here we demonstrate a successful feeder-free hES culture system in which undifferentiated cells can be maintained for at least 130 population doublings. In this system,hES cells are cultured on Matrigel or laminin in medium conditioned by MEF. The hES cells maintained on feeders or off feeders express integrin alpha6 and beta1,which may form a laminin-specific receptor. The hES cell populations in feeder-free conditions maintained a normal karyotype,stable proliferation rate,and high telomerase activity. Similar to cells cultured on feeders,hES cells maintained under feeder-free conditions expressed OCT-4,hTERT,alkaline phosphatase,and surface markers including SSEA-4,Tra 1-60,and Tra 1-81. In addition,hES cells maintained without direct feeder contact formed teratomas in SCID/beige mice and differentiated in vitro into cells from all three germ layers. Thus,the cells retain fundamental characteristics of hES cells in this culture system and are suitable for scaleup production.
View Publication
产品类型:
产品号#:
07181
产品名:
Mace EM et al. ( 2016)
Nature communications 7 12171
Human NK cell development requires CD56-mediated motility and formation of the developmental synapse.
While distinct stages of natural killer (NK) cell development have been defined,the molecular interactions that shape human NK cell maturation are poorly understood. Here we define intercellular interactions between developing NK cells and stromal cells which,through contact-dependent mechanisms,promote the generation of mature,functional human NK cells from CD34(+) precursors. We show that developing NK cells undergo unique,developmental stage-specific sustained and transient interactions with developmentally supportive stromal cells,and that the relative motility of NK cells increases as they move through development in vitro and ex vivo. These interactions include the formation of a synapse between developing NK cells and stromal cells,which we term the developmental synapse. Finally,we identify a role for CD56 in developmental synapse structure,NK cell motility and NK cell development. Thus,we define the developmental synapse leading to human NK cell functional maturation.
View Publication
产品类型:
产品号#:
05150
15025
15065
产品名:
MyeloCult™H5100
RosetteSep™人NK细胞富集抗体混合物
RosetteSep™人NK细胞富集抗体混合物
van Beem RT et al. (APR 2008)
Journal of immunology (Baltimore,Md. : 1950) 180 7 5141--8
The presence of activated CD4(+) T cells is essential for the formation of colony-forming unit-endothelial cells by CD14(+) cells.
The number of colony forming unit-endothelial cells (CFU-EC) in human peripheral blood was found to be a biological marker for several vascular diseases. In this study,the heterogeneous composition of immune cells in the CFU-ECs was investigated. We confirmed that monocytes are essential for the formation of CFU-ECs. Also,however,CD4(+) T cells were found to be indispensable for the induction of CFU-EC colonies,mainly through cell-cell contact. By blocking or activating CD3 receptors on CD4(+) T cells or blocking MHC class II molecules on monocytes,it was shown that TCR-MHCII interactions are required for induction of CFU-EC colonies. Because the supernatant from preactivated T cells could also induce colony formation from purified monocytes,the T cell support turned out to be cytokine mediated. Gene expression analysis of the endothelial-like colonies formed by CD14(+) cells showed that colony formation is a proangiogenic differentiation and might reflect the ability of monocytes to facilitate vascularization. This in vitro study is the first to reveal the role of TCR-MHC class II interactions between T cells and monocytes and the subsequent inflammatory response as stimulus of monocytic properties that are associated with vascularization.
View Publication
产品类型:
产品号#:
05900
05950
产品名:
Garreta E et al. (APR 2016)
Biomaterials 98 64--78
Myocardial commitment from human pluripotent stem cells: Rapid production of human heart grafts
Genome editing on human pluripotent stem cells (hPSCs) together with the development of protocols for organ decellularization opens the door to the generation of autologous bioartificial hearts. Here we sought to generate for the first time a fluorescent reporter human embryonic stem cell (hESC) line by means of Transcription activator-like effector nucleases (TALENs) to efficiently produce cardiomyocyte-like cells (CLCs) from hPSCs and repopulate decellularized human heart ventricles for heart engineering. In our hands,targeting myosin heavy chain locus (MYH6) with mCherry fluorescent reporter by TALEN technology in hESCs did not alter major pluripotent-related features,and allowed for the definition of a robust protocol for CLCs production also from human induced pluripotent stem cells (hiPSCs) in 14 days. hPSCs-derived CLCs (hPSCs-CLCs) were next used to recellularize acellular cardiac scaffolds. Electrophysiological responses encountered when hPSCs-CLCs were cultured on ventricular decellularized extracellular matrix (vdECM) correlated with significant increases in the levels of expression of different ion channels determinant for calcium homeostasis and heart contractile function. Overall,the approach described here allows for the rapid generation of human cardiac grafts from hPSCs,in a total of 24 days,providing a suitable platform for cardiac engineering and disease modeling in the human setting.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Hanawa H et al. (JUN 2004)
Blood 103 11 4062--9
Efficient gene transfer into rhesus repopulating hematopoietic stem cells using a simian immunodeficiency virus-based lentiviral vector system.
High-titer,HIV-1-based lentiviral vector particles were found to transduce cytokine-mobilized rhesus macaque CD34(+) cells and clonogenic progenitors very poorly (textless 1%),reflecting the postentry restriction in rhesus cells to HIV infection. To overcome this barrier,we developed a simian immunodeficiency virus (SIV)-based vector system. A single exposure to a low concentration of amphotropic pseudotyped SIV vector particles encoding the green fluorescent protein (GFP) resulted in gene transfer into 68% +/- 1% of rhesus bulk CD34(+) cells and 75% +/- 1% of clonogenic progenitors. Polymerase chain reaction (PCR) analysis of DNA from individual hematopoietic colonies confirmed these relative transduction efficiencies. To evaluate SIV vector-mediated stem cell gene transfer in vivo,3 rhesus macaques underwent transplantation with transduced,autologous cytokine-mobilized peripheral blood CD34(+) cells following myeloablative conditioning. Hematopoietic reconstitution was rapid,and an average of 18% +/- 8% and 15% +/- 7% GFP-positive granulocytes and monocytes,respectively,were observed 4 to 6 months after transplantation,consistent with the average vector copy number of 0.19 +/- 0.05 in peripheral blood leukocytes as determined by real-time PCR. Vector insertion site analysis demonstrated polyclonal reconstitution with vector-containing cells. SIV vectors appear promising for evaluating gene therapy approaches in nonhuman primate models.
View Publication
产品类型:
产品号#:
84434
84444
产品名:
F. Huang et al. (Jul 2025)
Journal of Nanobiotechnology 23
Early-life exposure to polypropylene nanoplastics induces neurodevelopmental toxicity in mice and human iPSC-derived cerebral organoids
Nanoplastics (NPs) are emerging environmental pollutants that pose growing concerns due to their potential health risks. However,the effects of inhaled NP exposure during pregnancy on fetal brain development remain poorly understood. In this study,we investigated the impact of maternal exposure to polypropylene nanoplastics (PP-NPs) on fetal brain development and neurobehavioral outcomes in a mouse model and further explored its mechanism in human cerebral organoids. Maternal exposure to PP-NPs significantly impaired neuronal differentiation and proliferation in the fetal cortex. Neurobehavioral assessments revealed significant deficits in offspring following maternal exposure,including impaired spatial memory,reduced motor coordination,and heightened anxiety-like behavior. Furthermore,human brain organoids exposed to PP-NPs exhibited reduced growth and neuronal differentiation,with significant downregulation of key neuronal markers such as TUJ1,MAP2,and PAX6. Transcriptomic analysis identified alterations in gene expression,particularly in neuroactive ligand-receptor interaction pathway. Molecular docking and fluorescence co-localization analysis further suggested CYSLTR1 and PTH1R as key molecular targets of PP-NPs. These findings provide novel insights into the toxicological effects of NPs on the developing brain and emphasize the need for preventive measures to protect fetal neurodevelopment during pregnancy. The online version contains supplementary material available at 10.1186/s12951-025-03561-1.
View Publication