Kozhukharova IV et al. (JAN 2010)
Tsitologiia 52 10 875--82
[Generation of dopamine neurons from human embryonic stem cells in vitro].
The aim of the study was to generate dopaminergic (DA) neurons from human embryonic stem cells (ESC) in vitro. It was shown that human ESCs are able to differentiated into DA neurons without co-culture with stromal cells. Terminal differentiation into DA neurons was reached by successive application of noggin and bFGF growth factors on collagen and matrigel substrates during 3-4 weeks. Differentiation efficiency was evaluated by the number of colonies with cells expressing tyrosine hydroxylase (TH),a DA neuron marker,and by the number of TH-positive cells in cell suspension using flow cytometry. No cells with pluripotent markers were detected in DA-differentiated cultures. It makes possible to propose that the protocol of human ESC differentiation might be applied to generate DA neurons for their transplantation into the animals modeling neurodegenerative (Parkinson) disease without the risk of tumor growth.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Lister R et al. (MAR 2011)
Nature 471 7336 68--73
Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells.
Induced pluripotent stem cells (iPSCs) offer immense potential for regenerative medicine and studies of disease and development. Somatic cell reprogramming involves epigenomic reconfiguration,conferring iPSCs with characteristics similar to embryonic stem (ES) cells. However,it remains unknown how complete the reestablishment of ES-cell-like DNA methylation patterns is throughout the genome. Here we report the first whole-genome profiles of DNA methylation at single-base resolution in five human iPSC lines,along with methylomes of ES cells,somatic cells,and differentiated iPSCs and ES cells. iPSCs show significant reprogramming variability,including somatic memory and aberrant reprogramming of DNA methylation. iPSCs share megabase-scale differentially methylated regions proximal to centromeres and telomeres that display incomplete reprogramming of non-CG methylation,and differences in CG methylation and histone modifications. Lastly,differentiation of iPSCs into trophoblast cells revealed that errors in reprogramming CG methylation are transmitted at a high frequency,providing an iPSC reprogramming signature that is maintained after differentiation.
View Publication
Jaiswal N et al. (FEB 1997)
Journal of cellular biochemistry 64 2 295--312
Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro.
Human bone marrow contains a population of cells capable of differentiating along multiple mesenchymal cell lineages. Recently,techniques for the purification and culture-expansion of these human marrow-derived Mesenchymal Stem Cells (MSCs) have been developed. The goals of the current study were to establish a reproducible system for the in vitro osteogenic differentiation of human MSCs,and to characterize the effect of changes in the microenvironment upon the process. MSCs derived from 2nd or 3rd passage were cultured for 16 days in various base media containing 1 to 1000 nM dexamethasone (Dex),0.01 to 4 mM L-ascorbic acid-2-phosphate (AsAP) or 0.25 mM ascorbic acid,and 1 to 10 mM beta-glycerophosphate (beta GP). Optimal osteogenic differentiation,as determined by osteoblastic morphology,expression of alkaline phosphatase (APase),reactivity with anti-osteogenic cell surface monoclonal antibodies,modulation of osteocalcin mRNA production,and the formation of a mineralized extracellular matrix containing hydroxyapatite was achieved with DMEM base medium plus 100 nM Dex,0.05 mM AsAP,and 10 mM beta GP. The formation of a continuously interconnected network of APase-positive cells and mineralized matrix supports the characterization of this progenitor population as homogeneous. While higher initial seeding densities did not affect cell number of APase activity,significantly more mineral was deposited in these cultures,suggesting that events which occur early in the differentiation process are linked to end-stage phenotypic expression. Furthermore,cultures allowed to concentrate their soluble products in the media produced more mineralized matrix,thereby implying a role for autocrine or paracrine factors synthesized by human MSCs undergoing osteoblastic lineage progression. This culture system is responsive to subtle manipulations including the basal nutrient medium,dose of physiologic supplements,cell seeding density,and volume of tissue culture medium. Cultured human MSCs provide a useful model for evaluating the multiple factors responsible for the step-wise progression of cells from undifferentiated precursors to secretory osteoblasts,and eventually terminally differentiated osteocytes.
View Publication
产品类型:
产品号#:
72092
产品名:
地塞米松(Dexamethasone)
文献
Ghezzi S et al. (APR 2017)
Antiviral research 140 13--17
Heparin prevents Zika virus induced-cytopathic effects in human neural progenitor cells.
The recent Zika virus (ZIKV) outbreak,which mainly affected Brazil and neighbouring states,demonstrated the paucity of information concerning the epidemiology of several flaviruses,but also highlighted the lack of available agents with which to treat such emerging diseases. Here,we show that heparin,a widely used anticoagulant,while exerting a modest inhibitory effect on Zika Virus replication,fully prevents virus-induced cell death of human neural progenitor cells (NPCs).
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
G. La Manno et al. (OCT 2016)
Cell 167 2 566--580.e19
Molecular Diversity of Midbrain Development in Mouse, Human, and Stem Cells.
Understanding human embryonic ventral midbrain is of major interest for Parkinson's disease. However,the cell types,their gene expression dynamics,and their relationship to commonly used rodent models remain to be defined. We performed single-cell RNA sequencing to examine ventral midbrain development in human and mouse. We found 25 molecularly defined human cell types,including five subtypes of radial glia-like cells and four progenitors. In the mouse,two mature fetal dopaminergic neuron subtypes diversified into five adult classes during postnatal development. Cell types and gene expression were generally conserved across species,but with clear differences in cell proliferation,developmental timing,and dopaminergic neuron development. Additionally,we developed a method to quantitatively assess the fidelity of dopaminergic neurons derived from human pluripotent stem cells,at a single-cell level. Thus,our study provides insight into the molecular programs controlling human midbrain development and provides a foundation for the development of cell replacement therapies.
View Publication
产品类型:
产品号#:
产品名:
文献
C. A. Egelston et al. (OCT 2018)
Nature communications 9 1 4297
Human breast tumor-infiltrating CD8+ T cells retain polyfunctionality despite PD-1 expression.
Functional CD8+ T cells in human tumors play a clear role in clinical prognosis and response to immunotherapeutic interventions. PD-1 expression in T cells involved in chronic infections and tumors such as melanoma often correlates with a state of T-cell exhaustion. Here we interrogate CD8+ tumor-infiltrating lymphocytes (TILs) from human breast and melanoma tumors to explore their functional state. Despite expression of exhaustion hallmarks,such as PD-1 expression,human breast tumor CD8+ TILs retain robust capacity for production of effector cytokines and degranulation capacity. In contrast,melanoma CD8+ TILs display dramatic reduction of cytokine production and degranulation capacity. We show that CD8+ TILs from human breast tumors can potently kill cancer cells via bi-specific antibodies. Our data demonstrate that CD8+ TILs in human breast tumors retain polyfunctionality,despite PD-1 expression,and suggest that they may be harnessed for effective immunotherapies.
View Publication
Gasparetto M et al. (OCT 2012)
Experimental hematology 40 10 857--66.e5
Varying levels of aldehyde dehydrogenase activity in adult murine marrow hematopoietic stem cells are associated with engraftment and cell cycle status.
Aldehyde dehydrogenase (ALDH) activity is a widely used marker for human hematopoietic stem cells (HSCs),yet its relevance and role in murine HSCs remain unclear. We found that murine marrow cells with a high level of ALDH activity as measured by Aldefluor staining (ALDH(br) cells) do not contain known HSCs or progenitors. In contrast,highly enriched murine HSCs defined by the CD48(-)EPCR(+) and other phenotypes contain two subpopulations,one that stains dimly with Aldefluor (ALDH(dim)) and one that stains at intermediate levels (ALDH(int)). The CD48(-)EPCR(+)ALDH(dim) cells are virtually all in G(0) and yield high levels of engraftment via both intravenous and intrabone routes. In contrast the CD48(-)EPCR(+)ALDH(int) cells are virtually all in G(1),have little intravenous engraftment potential,and yet can engraft long-term after intrabone transplantation. These data demonstrate that Aldefluor staining of unfractionated murine marrow does not identify known HSCs or progenitors. However,varying levels of Aldefluor staining when combined with CD48 and EPCR detection can identify novel populations in murine marrow including a highly enriched population of resting HSCs and a previously unknown HSC population in G(1) with an intravenous engraftment defect.
View Publication
Leonova KI et al. (APR 2010)
Cell cycle (Georgetown,Tex.) 9 7 1434--43
A small molecule inhibitor of p53 stimulates amplification of hematopoietic stem cells but does not promote tumor development in mice.
It has been shown that genetic inhibition of p53 leads to enhanced proliferation of hematopoietic stem cells (HSCs). This could,in theory,contribute to the increased frequency of tumor development observed in p53-deficient mice and humans. In our previous work,we identified chemical p53 inhibitors (PFTs) that suppress the transactivation function of p53 and protect cultured cells and mice from death induced by gamma irradiation (IR). Here we found that when applied to bone marrow cells in vitro or injected into mice,PFTb impeded IR-induced reduction of hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC) population sizes. In addition,we showed that PFTb stimulated HSC and HPC proliferation in the absence of IR in vitro and in vivo and mobilized HSCs to the peripheral blood. Importantly,however,PFTb treatment did not affect the timing or frequency of tumor development in irradiated p53 heterozygous mice used as a model for determination of carcinogenicity. Thus,although PFTb administration led to increased numbers of HSCs and HPCs,it was not carcinogenic in mice. These findings suggest that chemical p53 inhibitors may be clinically useful as safe and effective stimulators of hematopoiesis.
View Publication