PRMT5-mediated methylation of STAT3 is required for lung cancer stem cell maintenance and tumour growth
STAT3 is constitutively activated in many cancer types,including lung cancer,and can induce cancer cell proliferation and cancer stem cell (CSC) maintenance. STAT3 is activated by tyrosine kinases,such as JAK and SRC,but the mechanism by which STAT3 maintains its activated state in cancer cells remains unclear. Here,we show that PRMT5 directly methylates STAT3 and enhances its activated tyrosine phosphorylation in non-small cell lung cancer (NSCLC) cells. PRMT5 expression is also induced by STAT3,suggesting the presence of a positive feedback loop in cancer cells. Furthermore,methylation of STAT3 at arginine 609 by PRMT5 is important for its transcriptional activity and support of tumour growth and CSC maintenance. Indeed,NSCLC cells expressing the STAT3 mutant which R609 was replaced to alanine (R609K) show significantly impaired tumour growth in nude mice. Overall,our study reveals a mechanism by which STAT3 remains activated in NSCLC and provides a new target for cancer therapeutic approaches. Subject terms: Oncogenes,Non-small-cell lung cancer,Growth factor signalling
View Publication
产品类型:
产品号#:
01700
产品名:
ALDEFLUOR™ 试剂盒
Matthews TA et al. (JAN 2014)
Brain Research 1543 28--37
Expression of the CHOP-inducible carbonic anhydrase CAVI-b is required for BDNF-mediated protection from hypoxia
Carbonic anhydrases (CAs) comprise a family of zinc-containing enzymes that catalyze the reversible hydration of carbon dioxide. CAs contribute to a myriad of physiological processes,including pH regulation,anion transport and water balance. To date,16 known members of the mammalian alpha-CA family have been identified. Given that the catalytic family members share identical reaction chemistry,their physiologic roles are influenced greatly by their tissue and sub-cellular locations. CAVI is the lone secreted CA and exists in both saliva and the gastrointestinal mucosa. An alternative,stress-inducible isoform of CAVI (CAVI-b) has been shown to be expressed from a cryptic promoter that is activated by the CCAAT/Enhancer-Binding Protein Homologous Protein (CHOP). The CAVI-b isoform is not secreted and is currently of unknown physiological function. Here we use neuronal models,including a model derived using Car6 and CHOP gene ablations,to delineate a role for CAVI-b in ischemic protection. Our results demonstrate that CAVI-b expression,which is increased through CHOP-signaling in response to unfolded protein stress,is also increased by oxygen-glucose deprivation (OGD). While enforced expression of CAVI-b is not sufficient to protect against ischemia,CHOP regulation of CAVI-b is necessary for adaptive changes mediated by BDNF that reduce subsequent ischemic damage. These results suggest that CAVI-b comprises a necessary component of a larger adaptive signaling pathway downstream of CHOP.
View Publication
产品类型:
产品号#:
05700
05701
05702
05703
05704
产品名:
NeuroCult™ 基础培养基(小鼠&大鼠)
NeuroCult™ 扩增添加物 (小鼠&大鼠)
NeuroCult™ 扩增试剂盒 (小鼠&大鼠)
NeuroCult™ 分化添加物 (小鼠&大鼠)
NeuroCult™ 分化试剂盒 (小鼠&大鼠)
Farin HF et al. (DEC 2012)
Gastroenterology 143 6 1518--1529.e7
Redundant sources of Wnt regulate intestinal stem cells and promote formation of Paneth cells.
BACKGROUND & AIMS Wnt signaling regulates multiple aspects of intestinal physiology,including stem cell maintenance. Paneth cells support stem cells by secreting Wnt,but little is known about the exact sources and primary functions of individual Wnt family members. METHODS We analyzed intestinal tissues and cultured epithelial cells from adult mice with conditional deletion of Wnt3 (Vil-CreERT2;Wnt3fl/fl mice). We also analyzed intestinal tissues and cells from Atoh1 mutant mice,which lack secretory cells. RESULTS Unexpectedly,Wnt3 was dispensable for maintenance of intestinal stem cells in mice,indicating a redundancy of Wnt signals. By contrast,cultured crypt organoids required Paneth cell-derived Wnt3. Addition of exogenous Wnt,or coculture with mesenchymal cells,restored growth of Vil-CreERT2;Wnt3fl/fl crypt organoids. Intestinal organoids from Atoh1 mutant mice did not grow or form Paneth cells; addition of Wnt3 allowed growth in the absence of Paneth cells. Wnt signaling had a synergistic effect with the Lgr4/5 ligand R-spondin to induce formation of Paneth cells. Mosaic expression of Wnt3 in organoids using a retroviral vector promoted differentiation of Paneth cells in a cell-autonomous manner. CONCLUSIONS Wnt is part of a signaling loop that affects homeostasis of intestinal stem and Paneth cells in mice. Wnt3 signaling is required for growth and development of organoid cultures,whereas nonepithelial Wnt signals could provide a secondary physiological source of Wnt.
View Publication
产品类型:
产品号#:
72122
72124
产品名:
IWP-2
IWP-2
Richard J et al. (FEB 2010)
Blood 115 7 1354--63
HIV-1 Vpr up-regulates expression of ligands for the activating NKG2D receptor and promotes NK cell-mediated killing.
HIV up-regulates cell-surface expression of specific ligands for the activating NKG2D receptor,including ULBP-1,-2,and -3,but not MICA or MICB,in infected cells both in vitro and in vivo. However,the viral factor(s) involved in NKG2D ligand expression still remains undefined. HIV-1 Vpr activates the DNA damage/stress-sensing ATR kinase and promotes G(2) cell-cycle arrest,conditions known to up-regulate NKG2D ligands. We report here that HIV-1 selectively induces cell-surface expression of ULBP-2 in primary CD4(+) T lymphocytes by a process that is Vpr dependent. Importantly,Vpr enhanced the susceptibility of HIV-1-infected cells to NK cell-mediated killing. Strikingly,Vpr alone was sufficient to up-regulate expression of all NKG2D ligands and thus promoted efficient NKG2D-dependent NK cell-mediated killing. Delivery of virion-associated Vpr via defective HIV-1 particles induced analogous biologic effects in noninfected target cells,suggesting that Vpr may act similarly beyond infected cells. All these activities relied on Vpr ability to activate the ATR-mediated DNA damage/stress checkpoint. Overall,these results indicate that Vpr is a key determinant responsible for HIV-1-induced up-regulation of NKG2D ligands and further suggest an immunomodulatory role for Vpr that may not only contribute to HIV-1-induced CD4(+) T-lymphocyte depletion but may also take part in HIV-1-induced NK-cell dysfunction.
View Publication
产品类型:
产品号#:
19052
19052RF
19055
19055RF
产品名:
EasySep™人CD4+ T细胞富集试剂盒
RoboSep™ 人CD4+ T细胞富集试剂盒含滤芯吸头
EasySep™人NK细胞富集试剂盒
RoboSep™ 人NK细胞富集试剂盒含滤芯吸头
Tang C et al. (SEP 2011)
Nature biotechnology 29 9 829--34
An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells.
An important risk in the clinical application of human pluripotent stem cells (hPSCs),including human embryonic and induced pluripotent stem cells (hESCs and hiPSCs),is teratoma formation by residual undifferentiated cells. We raised a monoclonal antibody against hESCs,designated anti-stage-specific embryonic antigen (SSEA)-5,which binds a previously unidentified antigen highly and specifically expressed on hPSCs--the H type-1 glycan. Separation based on SSEA-5 expression through fluorescence-activated cell sorting (FACS) greatly reduced teratoma-formation potential of heterogeneously differentiated cultures. To ensure complete removal of teratoma-forming cells,we identified additional pluripotency surface markers (PSMs) exhibiting a large dynamic expression range during differentiation: CD9,CD30,CD50,CD90 and CD200. Immunohistochemistry studies of human fetal tissues and bioinformatics analysis of a microarray database revealed that concurrent expression of these markers is both common and specific to hPSCs. Immunodepletion with antibodies against SSEA-5 and two additional PSMs completely removed teratoma-formation potential from incompletely differentiated hESC cultures.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
De Filippis L et al. ( 2016)
Molecular brain 9 1 51
Ethanol-mediated activation of the NLRP3 inflammasome in iPS cells and iPS cells-derived neural progenitor cells.
BACKGROUND Alcohol abuse produces an enormous impact on health,society,and the economy. Currently,there are very limited therapies available,largely due to the poor understanding of mechanisms underlying alcohol use disorders (AUDs) in humans. Oxidative damage of mitochondria and cellular proteins aggravates the progression of neuroinflammation and neurological disorders initiated by alcohol abuse. RESULTS Here we show that ethanol exposure causes neuroinflammation in both human induced pluripotent stem (iPS) cells and human neural progenitor cells (NPCs). Ethanol exposure for 24 hours or 7 days does not affect the proliferation of iPS cells and NPCs,but primes an innate immune-like response by activating the NLR family pyrin domain containing 3 (NLRP3) inflammasome pathway. This leads to an increase of microtubule-associated protein 1A/1B-light chain 3(+) (LC3B(+)) autophagic puncta and impairment of the mitochondrial and lysosomal distribution. In addition,a decrease of mature neurons derived from differentiating NPCs is evident in ethanol pre-exposed compared to control NPCs. Moreover,a second insult of a pro-inflammatory factor in addition to ethanol preexposure enhances innate cellular inflammation in human iPS cells. CONCLUSIONS This study provides strong evidence that neuronal inflammation contributes to the pathophysiology of AUDs through the activation of the inflammasome pathway in human cellular models.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Tucker BA et al. (DEC 2015)
Translational Research 166 6 740--749.e1
Using patient-specific induced pluripotent stem cells to interrogate the pathogenicity of a novel retinal pigment epithelium-specific 65 kDa cryptic splice site mutation and confirm eligibility for enrollment into a clinical gene augmentation trial
Retinal pigment epithelium-specific 65 kDa (RPE65)-associated Leber congenital amaurosis is an autosomal recessive disease that results in reduced visual acuity and night blindness beginning at birth. It is one of the few retinal degenerative disorders for which promising clinical gene transfer trials are currently underway. However,the ability to enroll patients in a gene augmentation trial is dependent on the identification of 2 bona fide disease-causing mutations,and there are some patients with the phenotype of RPE65-associated disease who might benefit from gene transfer but are ineligible because 2 disease-causing genetic variations have not yet been identified. Some such patients have novel mutations in RPE65 for which pathogenicity is difficult to confirm. The goal of this study was to determine if an intronic mutation identified in a 2-year-old patient with presumed RPE65-associated disease was truly pathogenic and grounds for inclusion in a clinical gene augmentation trial. Sequencing of the RPE65 gene revealed 2 mutations: (1) a previously identified disease-causing exonic leucine-to-proline mutation (L408P) and (2) a novel single point mutation in intron 3 (IVS3-11) resulting in an AtextgreaterG change. RT-PCR analysis using RNA extracted from control human donor eye-derived primary RPE,control iPSC-RPE cells,and proband iPSC-RPE cells revealed that the identified IVS3-11 variation caused a splicing defect that resulted in a frameshift and insertion of a premature stop codon. In this study,we demonstrate how patient-specific iPSCs can be used to confirm pathogenicity of unknown mutations,which can enable positive clinical outcomes.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Nolz JC et al. (JUL 2007)
Journal of immunology (Baltimore,Md. : 1950) 179 2 1104--12
TCR/CD28-stimulated actin dynamics are required for NFAT1-mediated transcription of c-rel leading to CD28 response element activation.
TCR/CD28 engagement triggers the initiation of a variety of signal transduction pathways that lead to changes in gene transcription. Although reorganization of the actin cytoskeleton is required for T cell activation,the molecular pathways controlled by the actin cytoskeleton are ill defined. To this end,we analyzed TCR/CD28-stimulated signaling pathways in cytochalasin D-treated T cells to determine the cytoskeletal requirements for T cell activation. Cytochalasin D treatment impaired T cell activation by causing a reduction in TCR/CD28-mediated calcium flux,and blocked activation of two regulatory elements within the IL-2 promoter,NFAT/AP-1 and CD28RE/AP. Treatment had no effect on signaling leading to the activation of either AP-1 or NF-kappaB. Significantly,we found that NFAT1 is required for optimal c-rel up-regulation in response to TCR/CD28 stimulation. In fact,NFAT1 could be detected bound at the c-rel promoter in response to TCR/CD28 stimulation,and targeting of NFAT1 using RNA interference in human CD4(+) T cells abrogated c-rel transcription. Overall,these findings establish that disrupting actin cytoskeletal dynamics impairs TCR/CD28-mediated calcium flux required for NFAT1-mediated c-rel transcription and,thus,activation of the CD28RE/AP.
View Publication
产品类型:
产品号#:
15022
15062
产品名:
RosetteSep™人CD4+ T细胞富集抗体混合物
RosetteSep™人CD4+ T细胞富集抗体混合物
Waltenberger J et al. ( 1999)
Circulation research 85 1 12--22
A dual inhibitor of platelet-derived growth factor beta-receptor and Src kinase activity potently interferes with motogenic and mitogenic responses to PDGF in vascular smooth muscle cells. A novel candidate for prevention of vascular remodeling.
PP1 has previously been described as an inhibitor of the Src-family kinases p56(Lck) and FynT. We have therefore decided to use PP1 to determine the functional role of Src in platelet-derived growth factor (PDGF)-induced proliferation and migration of human coronary artery smooth muscle cells (HCASMCs). A synthetic protocol for PP1/AGL1872 has been developed,and the inhibitory activity of PP1/AGL1872 against Src was examined. PP1/AGL1872 potently inhibited recombinant p60(c-src) in vitro and Src-dependent tyrosine phosphorylation in p60(c-srcF572)-transformed NIH3T3 cells. PP1/AGL1872 also potently inhibited PDGF-stimulated migration of HCASMCs,as determined in the modified Boyden chamber,as well as PDGF-stimulated proliferation of HCASMCs. Surprisingly,in addition to inhibition of Src kinase,PP1/AGL1872 was found to inhibit PDGF receptor kinase in cell-free assays and in various types of intact cells,including HCASMCs. PP1/AGL1872 did not inhibit phosphorylation of the vascular endothelial growth factor receptor KDR (VEGF receptor-2; kinase-insert domain containing receptor) in cell-free assays as well as in intact human coronary artery endothelial cells. In line with the insensitivity of KDR,PP1/AGL1872 had only a weak effect on vascular endothelial growth factor-stimulated migration of human coronary artery endothelial cells. On treatment of cells expressing different receptor tyrosine kinases,the activities of the epidermal growth factor receptor,fibroblast growth factor receptor-1,and insulin-like growth factor-1 receptor were resistant to PP1/AGL1872,whereas PDGF alpha-receptor was susceptible,albeit to a lesser extent than PDGF beta-receptor. These data suggest that the previously described tyrosine kinase inhibitor PP1/AGL1872 is not selective for the Src family of tyrosine kinases. It is also a potent inhibitor of the PDGF beta-receptor kinase but is not a ubiquitous tyrosine kinase inhibitor. PP1/AGL1872 inhibits migration and proliferation of HCASMCs probably by interference with 2 distinct tyrosine phosphorylation events,creating a novel and potent inhibitory principle with possible relevance for the treatment of pathological HCASMC activity,such as vascular remodeling and restenosis.
View Publication
产品类型:
产品号#:
73112
73114
产品名:
PP1
PP1
Levenstein ME et al. (DEC 2008)
Stem cells (Dayton,Ohio) 26 12 3099--107
Secreted proteoglycans directly mediate human embryonic stem cell-basic fibroblast growth factor 2 interactions critical for proliferation.
Human embryonic stem (ES) cells can be maintained in an undifferentiated state if the culture medium is first conditioned on a layer of mouse embryonic fibroblast (MEF) feeder cells. Here we show that human ES cell proliferation is coordinated by MEF-secreted heparan sulfate proteoglycans (HSPG) in conditioned medium (CM). These HSPG and other heparinoids can stabilize basic fibroblast growth factor (FGF2) in unconditioned medium at levels comparable to those observed in CM. They also directly mediate binding of FGF2 to the human ES cell surface,and their removal from CM impairs proliferation. Finally,we have developed a purification scheme for MEF-secreted HSPG in CM. Using column chromatography,immunoblotting,and mass spectrometry-based proteomic analysis,we have identified multiple HSPG species in CM. The results demonstrate that HSPG are key signaling cofactors in CM-based human ES cell culture.
View Publication