M. S. Fernandopulle et al. (JUN 2018)
Current protocols in cell biology 79 1 e51
Transcription Factor-Mediated Differentiation of Human iPSCs into Neurons.
Accurate modeling of human neuronal cell biology has been a long-standing challenge. However,methods to differentiate human induced pluripotent stem cells (iPSCs) to neurons have recently provided experimentally tractable cell models. Numerous methods that use small molecules to direct iPSCs into neuronal lineages have arisen in recent years. Unfortunately,these methods entail numerous challenges,including poor efficiency,variable cell type heterogeneity,and lengthy,expensive differentiation procedures. We recently developed a new method to generate stable transgenic lines of human iPSCs with doxycycline-inducible transcription factors at safe-harbor loci. Using a simple two-step protocol,these lines can be inducibly differentiated into either cortical (i3 Neurons) or lower motor neurons (i3 LMN) in a rapid,efficient,and scalable manner (Wang et al.,2017). In this manuscript,we describe a set of protocols to assist investigators in the culture and genetic engineering of iPSC lines to enable transcription factor-mediated differentiation of iPSCs into i3 Neurons or i3 LMNs,and we present neuronal culture conditions for various experimental applications. {\textcopyright} 2018 by John Wiley & Sons,Inc.
View Publication
产品类型:
产品号#:
07920
07922
05790
05792
05793
05794
05795
产品名:
ACCUTASE™
ACCUTASE™
BrainPhys™神经元培养基
BrainPhys™神经元培养基和SM1试剂盒
BrainPhys™ 神经元培养基N2-A和SM1试剂盒
BrainPhys™原代神经元试剂盒
BrainPhys™ hPSC 神经元试剂盒
文献
Y. Lin et al. (APR 2018)
Scientific reports 8 1 5907
Efficient differentiation of cardiomyocytes and generation of calcium-sensor reporter lines from nonhuman primate iPSCs.
Nonhuman primate (NHP) models are more predictive than rodent models for developing induced pluripotent stem cell (iPSC)-based cell therapy,but robust and reproducible NHP iPSC-cardiomyocyte differentiation protocols are lacking for cardiomyopathies research. We developed a method to differentiate integration-free rhesus macaque iPSCs (RhiPSCs) into cardiomyocytes with {\textgreater}85{\%} purity in 10 days,using fully chemically defined conditions. To enable visualization of intracellular calcium flux in beating cardiomyocytes,we used CRISPR/Cas9 to stably knock-in genetically encoded calcium indicators at the rhesus AAVS1 safe harbor locus. Rhesus cardiomyocytes derived by our stepwise differentiation method express signature cardiac markers and show normal electrochemical coupling. They are responsive to cardiorelevant drugs and can be successfully engrafted in a mouse myocardial infarction model. Our approach provides a powerful tool for generation of NHP iPSC-derived cardiomyocytes amenable to utilization in basic research and preclinical studies,including in vivo tissue regeneration models and drug screening.
View Publication
Lin T et al. (NOV 2009)
Nature methods 6 11 805--8
A chemical platform for improved induction of human iPSCs.
The slow kinetics and low efficiency of reprogramming methods to generate human induced pluripotent stem cells (iPSCs) impose major limitations on their utility in biomedical applications. Here we describe a chemical approach that dramatically improves (200-fold) the efficiency of iPSC generation from human fibroblasts,within seven days of treatment. This will provide a basis for developing safer,more efficient,nonviral methods for reprogramming human somatic cells.
View Publication
Salvagiotto G et al. (JAN 2011)
PLoS ONE 6 3 e17829
A defined, feeder-free, serum-free system to generate In Vitro hematopoietic progenitors and differentiated blood cells from hESCs and hiPSCs
Human ESC and iPSC are an attractive source of cells of high quantity and purity to be used to elucidate early human development processes,for drug discovery,and in clinical cell therapy applications. To efficiently differentiate pluripotent cells into a pure population of hematopoietic progenitors we have developed a new 2-dimensional,defined and highly efficient protocol that avoids the use of feeder cells,serum or embryoid body formation. Here we showed that a single matrix protein in combination with growth factors and a hypoxic environment is sufficient to generate from pluripotent cells hematopoietic progenitors capable of differentiating further in mature cell types of different lineages of the blood system. We tested the differentiation method using hESCs and 9 iPSC lines generated from different tissues. These data indicate the robustness of the protocol providing a valuable tool for the generation of clinical-grade hematopoietic cells from pluripotent cells.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Lie K-HH et al. (JAN 2012)
Methods in molecular biology (Clifton,N.J.) 873 237--246
Derivation, propagation, and characterization of neuroprogenitors from pluripotent stem cells (hESCs and hiPSCs).
The differentiation of human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs) towards functional neurons particularly hold great potential for the cell-based replacement therapy in neurodegenerative diseases. Here,we describe a stepwise differentiation protocol that mimics the early stage of neural development in human to promote the generation of neuroprogenitors at a high yield. Both the hESCs and hiPSCs are initially cultured in an optimized feeder-free condition,which offer an efficient formation of aggregates. To specify the neuroectodermal specification,these aggregates are differentiated in a defined neural induction medium to develop into neural rosettes-like structures. The rosettes are expanded into free-floating sphere and can be further propagated or developed into variety of neuronal subtypes.
View Publication
产品类型:
产品号#:
07913
85850
85857
产品名:
Dispase(5 U/mL)
mTeSR™1
mTeSR™1
文献
Zhang Z et al. (OCT 2013)
PLoS ONE 8 10 e76055
Downregulation of MicroRNA-9 in iPSC-Derived Neurons of FTD/ALS Patients with TDP-43 Mutations
Transactive response DNA-binding protein 43 (TDP-43) is a major pathological protein in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). There are many disease-associated mutations in TDP-43,and several cellular and animal models with ectopic overexpression of mutant TDP-43 have been established. Here we sought to study altered molecular events in FTD and ALS by using induced pluripotent stem cell (iPSC) derived patient neurons. We generated multiple iPSC lines from an FTD/ALS patient with the TARDBP A90V mutation and from an unaffected family member who lacked the mutation. After extensive characterization,two to three iPSC lines from each subject were selected,differentiated into postmitotic neurons,and screened for relevant cell-autonomous phenotypes. Patient-derived neurons were more sensitive than control neurons to 100 nM straurosporine but not to other inducers of cellular stress. Three disease-relevant cellular phenotypes were revealed under staurosporine-induced stress. First,TDP-43 was localized in the cytoplasm of a higher percentage of patient neurons than control neurons. Second,the total TDP-43 level was lower in patient neurons with the A90V mutation. Third,the levels of microRNA-9 (miR-9) and its precursor pri-miR-9-2 decreased in patient neurons but not in control neurons. The latter is likely because of reduced TDP-43,as shRNA-mediated TDP-43 knockdown in rodent primary neurons also decreased the pri-miR-9-2 level. The reduction in miR-9 expression was confirmed in human neurons derived from iPSC lines containing the more pathogenic TARDBP M337V mutation,suggesting miR-9 downregulation might be a common pathogenic event in FTD/ALS. These results show that iPSC models of FTD/ALS are useful for revealing stress-dependent cellular defects of human patient neurons containing rare TDP-43 mutations in their native genetic contexts.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Sareen D et al. (OCT 2013)
Science Translational Medicine 5 208 208ra149----208ra149
Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion.
Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative condition characterized by loss of motor neurons in the brain and spinal cord. Expansions of a hexanucleotide repeat (GGGGCC) in the noncoding region of the C9ORF72 gene are the most common cause of the familial form of ALS (C9-ALS),as well as frontotemporal lobar degeneration and other neurological diseases. How the repeat expansion causes disease remains unclear,with both loss of function (haploinsufficiency) and gain of function (either toxic RNA or protein products) proposed. We report a cellular model of C9-ALS with motor neurons differentiated from induced pluripotent stem cells (iPSCs) derived from ALS patients carrying the C9ORF72 repeat expansion. No significant loss of C9ORF72 expression was observed,and knockdown of the transcript was not toxic to cultured human motor neurons. Transcription of the repeat was increased,leading to accumulation of GGGGCC repeat-containing RNA foci selectively in C9-ALS iPSC-derived motor neurons. Repeat-containing RNA foci colocalized with hnRNPA1 and Pur-α,suggesting that they may be able to alter RNA metabolism. C9-ALS motor neurons showed altered expression of genes involved in membrane excitability including DPP6,and demonstrated a diminished capacity to fire continuous spikes upon depolarization compared to control motor neurons. Antisense oligonucleotides targeting the C9ORF72 transcript suppressed RNA foci formation and reversed gene expression alterations in C9-ALS motor neurons. These data show that patient-derived motor neurons can be used to delineate pathogenic events in ALS.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Schwarz N et al. (FEB 2015)
Human Molecular Genetics 24 4 972--986
Translational read-through of the RP2 Arg120stop mutation in patient iPSC-derived retinal pigment epithelium cells
Mutations in the RP2 gene lead to a severe form of X-linked retinitis pigmentosa. RP2 patients frequently present with nonsense mutations and no treatments are currently available to restore RP2 function. In this study,we reprogrammed fibroblasts from an RP2 patient carrying the nonsense mutation c.519CtextgreaterT (p.R120X) into induced pluripotent stem cells (iPSC),and differentiated these cells into retinal pigment epithelial cells (RPE) to study the mechanisms of disease and test potential therapies. RP2 protein was undetectable in the RP2 R120X patient cells,suggesting a disease mechanism caused by complete lack of RP2 protein. The RP2 patient fibroblasts and iPSC-derived RPE cells showed phenotypic defects in IFT20 localization,Golgi cohesion and G$\$1 trafficking. These phenotypes were corrected by over-expressing GFP-tagged RP2. Using the translational read-through inducing drugs (TRIDs) G418 and PTC124 (Ataluren),we were able to restore up to 20% of endogenous,full-length RP2 protein in R120X cells. This level of restored RP2 was sufficient to reverse the cellular phenotypic defects observed in both the R120X patient fibroblasts and iPSC-RPE cells. This is the first proof-of-concept study to demonstrate successful read-through and restoration of RP2 function for the R120X nonsense mutation. The ability of the restored RP2 protein level to reverse the observed cellular phenotypes in cells lacking RP2 indicates that translational read-through could be clinically beneficial for patients.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Zhao HW et al. (MAR 2015)
Neuroscience 288 187--199
Altered iPSC-derived neurons' sodium channel properties in subjects with Monge's disease
Monge's disease,also known as chronic mountain sickness (CMS),is a disease that potentially threatens more than 140 million highlanders during extended time living at high altitudes (over 2500m). The prevalence of CMS in Andeans is about 15-20%,suggesting that the majority of highlanders (non-CMS) are rather healthy at high altitudes; however,CMS subjects experience severe hypoxemia,erythrocytosis and many neurologic manifestations including migraine,headache,mental fatigue,confusion,and memory loss. The underlying mechanisms of CMS neuropathology are not well understood and no ideal treatment is available to prevent or cure CMS,except for phlebotomy. In the current study,we reprogrammed fibroblast cells from both CMS and non-CMS subjects' skin biopsies into the induced pluripotent stem cells (iPSCs),then differentiated into neurons and compared their neuronal properties. We discovered that CMS neurons were much less excitable (higher rheobase) than non-CMS neurons. This decreased excitability was not caused by differences in passive neuronal properties,but instead by a significantly lowered Na+ channel current density and by a shift of the voltage-conductance curve in the depolarization direction. Our findings provide,for the first time,evidence of a neuronal abnormality in CMS subjects as compared to non-CMS subjects,hoping that such studies can pave the way to a better understanding of the neuropathology in CMS.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Leung A and Murphy GJ (JAN 2016)
Methods in molecular biology (Clifton,N.J.) 1353 261--270
Multisystemic Disease Modeling of Liver-Derived Protein Folding Disorders Using Induced Pluripotent Stem Cells (iPSCs).
Familial transthyretin amyloidosis (ATTR) is an autosomal dominant protein-folding disorder caused by over 100 distinct mutations in the transthyretin (TTR) gene. In ATTR,protein secreted from the liver aggregates and forms fibrils in target organs,chiefly the heart and peripheral nervous system,highlighting the need for a model capable of recapitulating the multisystem complexity of this clinically variable disease. Here,we describe detailed methodologies for the directed differentiation of protein folding disease-specific iPSCs into hepatocytes that produce mutant protein,and neural-lineage cells often targeted in disease. Methodologies are also described for the construction of multisystem models and drug screening using iPSCs.
View Publication