Perales-Clemente E et al. (JUL 2016)
The EMBO Journal e201694892
Natural underlying mtDNA heteroplasmy as a potential source of intra-person hiPSC variability
Functional variability among human clones of induced pluripotent stem cells (hiPSCs) remains a limitation in assembling high-quality biorepositories. Beyond inter-person variability,the root cause of intra-person variability remains unknown. Mitochondria guide the required transition from oxidative to glycolytic metabolism in nuclear reprogramming. Moreover,mitochondria have their own genome (mitochondrial DNA [mtDNA]). Herein,we performed mtDNA next-generation sequencing (NGS) on 84 hiPSC clones derived from a cohort of 19 individuals,including mitochondrial and non-mitochondrial patients. The analysis of mtDNA variants showed that low levels of potentially pathogenic mutations in the original fibroblasts are revealed through nuclear reprogramming,generating mutant hiPSCs with a detrimental effect in their differentiated progeny. Specifically,hiPSC-derived cardiomyocytes with expanded mtDNA mutations non-related with any described human disease,showed impaired mitochondrial respiration,being a potential cause of intra-person hiPSC variability. We propose mtDNA NGS as a new selection criterion to ensure hiPSC quality for drug discovery and regenerative medicine.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Mou H et al. (APR 2012)
Cell stem cell 10 4 385--397
Generation of multipotent lung and airway progenitors from mouse ESCs and patient-specific cystic fibrosis iPSCs
Deriving lung progenitors from patient-specific pluripotent cells is a key step in producing differentiated lung epithelium for disease modeling and transplantation. By mimicking the signaling events that occur during mouse lung development,we generated murine lung progenitors in a series of discrete steps. Definitive endoderm derived from mouse embryonic stem cells (ESCs) was converted into foregut endoderm,then into replicating Nkx2.1+ lung endoderm,and finally into multipotent embryonic lung progenitor and airway progenitor cells. We demonstrated that precisely-timed BMP,FGF,and WNT signaling are required for NKX2.1 induction. Mouse ESC-derived Nkx2.1+ progenitor cells formed respiratory epithelium (tracheospheres) when transplanted subcutaneously into mice. We then adapted this strategy to produce disease-specific lung progenitor cells from human Cystic Fibrosis induced pluripotent stem cells (iPSCs),creating a platform for dissecting human lung disease. These disease-specific human lung progenitors formed respiratory epithelium when subcutaneously engrafted into immunodeficient mice.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Liu J et al. (SEP 2012)
Human Molecular Genetics 21 17 3795--3805
Signaling defects in iPSC-derived fragile X premutation neurons
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a leading monogenic neurodegenerative disorder affecting premutation carriers of the fragile X (FMR1) gene. To investigate the underlying cellular neuropathology,we produced induced pluripotent stem cell-derived neurons from isogenic subclones of primary fibroblasts of a female premutation carrier,with each subclone bearing exclusively either the normal or the expanded (premutation) form of the FMR1 gene as the active allele. We show that neurons harboring the stably-active,expanded allele (EX-Xa) have reduced postsynaptic density protein 95 protein expression,reduced synaptic puncta density and reduced neurite length. Importantly,such neurons are also functionally abnormal,with calcium transients of higher amplitude and increased frequency than for neurons harboring the normal-active allele. Moreover,a sustained calcium elevation was found in the EX-Xa neurons after glutamate application. By excluding the individual genetic background variation,we have demonstrated neuronal phenotypes directly linked to the FMR1 premutation. Our approach represents a unique isogenic,X-chromosomal epigenetic model to aid the development of targeted therapeutics for FXTAS,and more broadly as a model for the study of common neurodevelopmental (e.g. autism) and neurodegenerative (e.g. Parkinsonism,dementias) disorders.
View Publication
产品类型:
产品号#:
07923
07920
85850
85857
产品名:
Dispase (1 U/mL)
ACCUTASE™
mTeSR™1
mTeSR™1
文献
Bizy A et al. (NOV 2013)
Stem Cell Research 11 3 1335--1347
Myosin light chain 2-based selection of human iPSC-derived early ventricular cardiac myocytes
Applications of human induced pluripotent stem cell derived-cardiac myocytes (hiPSC-CMs) would be strengthened by the ability to generate specific cardiac myocyte (CM) lineages. However,purification of lineage-specific hiPSC-CMs is limited by the lack of cell marking techniques. Here,we have developed an iPSC-CM marking system using recombinant adenoviral reporter constructs with atrial- or ventricular-specific myosin light chain-2 (MLC-2) promoters. MLC-2a and MLC-2v selected hiPSC-CMs were purified by fluorescence-activated cell sorting and their biochemical and electrophysiological phenotypes analyzed. We demonstrate that the phenotype of both populations remained stable in culture and they expressed the expected sarcomeric proteins,gap junction proteins and chamber-specific transcription factors. Compared to MLC-2a cells,MLC-2v selected CMs had larger action potential amplitudes and durations. In addition,by immunofluorescence,we showed that MLC-2 isoform expression can be used to enrich hiPSC-CM consistent with early atrial and ventricular myocyte lineages. However,only the ventricular myosin light chain-2 promoter was able to purify a highly homogeneous population of iPSC-CMs. Using this approach,it is now possible to develop ventricular-specific disease models using iPSC-CMs while atrial-specific iPSC-CM cultures may require additional chamber-specific markers. ?? 2013 Elsevier B.V.
View Publication
Yokota M et al. (JAN 2017)
Cell death & disease 8 1 e2551
Mitochondrial respiratory dysfunction disturbs neuronal and cardiac lineage commitment of human iPSCs.
Mitochondrial diseases are genetically heterogeneous and present a broad clinical spectrum among patients; in most cases,genetic determinants of mitochondrial diseases are heteroplasmic mitochondrial DNA (mtDNA) mutations. However,it is uncertain whether and how heteroplasmic mtDNA mutations affect particular cellular fate-determination processes,which are closely associated with the cell-type-specific pathophysiology of mitochondrial diseases. In this study,we established two isogenic induced pluripotent stem cell (iPSC) lines each carrying different proportions of a heteroplasmic m.3243A>G mutation from the same patient; one exhibited apparently normal and the other showed most likely impaired mitochondrial respiratory function. Low proportions of m.3243A>G exhibited no apparent molecular pathogenic influence on directed differentiation into neurons and cardiomyocytes,whereas high proportions of m.3243A>G showed both induced neuronal cell death and inhibited cardiac lineage commitment. Such neuronal and cardiac maturation defects were also confirmed using another patient-derived iPSC line carrying quite high proportion of m.3243A>G. In conclusion,mitochondrial respiratory dysfunction strongly inhibits maturation and survival of iPSC-derived neurons and cardiomyocytes; our presenting data also suggest that appropriate mitochondrial maturation actually contributes to cellular fate-determination processes during development.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Bershteyn M et al. (APR 2017)
Cell stem cell 20 4 435--449.e4
Human iPSC-Derived Cerebral Organoids Model Cellular Features of Lissencephaly and Reveal Prolonged Mitosis of Outer Radial Glia.
Classical lissencephaly is a genetic neurological disorder associated with mental retardation and intractable epilepsy,and Miller-Dieker syndrome (MDS) is the most severe form of the disease. In this study,to investigate the effects of MDS on human progenitor subtypes that control neuronal output and influence brain topology,we analyzed cerebral organoids derived from control and MDS-induced pluripotent stem cells (iPSCs) using time-lapse imaging,immunostaining,and single-cell RNA sequencing. We saw a cell migration defect that was rescued when we corrected the MDS causative chromosomal deletion and severe apoptosis of the founder neuroepithelial stem cells,accompanied by increased horizontal cell divisions. We also identified a mitotic defect in outer radial glia,a progenitor subtype that is largely absent from lissencephalic rodents but critical for human neocortical expansion. Our study,therefore,deepens our understanding of MDS cellular pathogenesis and highlights the broad utility of cerebral organoids for modeling human neurodevelopmental disorders.
View Publication
产品类型:
产品号#:
07920
07922
85850
85857
产品名:
ACCUTASE™
ACCUTASE™
mTeSR™1
mTeSR™1
文献
A. M. Tukker et al. (JUL 2018)
Neurotoxicology 67 215--225
Human iPSC-derived neuronal models for in vitro neurotoxicity assessment.
Neurotoxicity testing still relies on ethically debated,expensive and time consuming in vivo experiments,which are unsuitable for high-throughput toxicity screening. There is thus a clear need for a rapid in vitro screening strategy that is preferably based on human-derived neurons to circumvent interspecies translation. Recent availability of commercially obtainable human induced pluripotent stem cell (hiPSC)-derived neurons and astrocytes holds great promise in assisting the transition from the current standard of rat primary cortical cultures to an animal-free alternative. We therefore composed several hiPSC-derived neuronal models with different ratios of excitatory and inhibitory neurons in the presence or absence of astrocytes. Using immunofluorescent stainings and multi-well micro-electrode array (mwMEA) recordings we demonstrate that these models form functional neuronal networks that become spontaneously active. The differences in development of spontaneous neuronal activity and bursting behavior as well as spiking patterns between our models confirm the importance of the presence of astrocytes. Preliminary neurotoxicity assessment demonstrates that these cultures can be modulated with known seizurogenic compounds,such as picrotoxin (PTX) and endosulfan,and the neurotoxicant methylmercury (MeHg). However,the chemical-induced effects on different parameters for neuronal activity,such as mean spike rate (MSR) and mean burst rate (MBR),may depend on the ratio of inhibitory and excitatory neurons. Our results thus indicate that hiPSC-derived neuronal models must be carefully designed and characterized prior to large-scale use in neurotoxicity screening.
View Publication