Suppression of histone deacetylation promotes the differentiation of human pluripotent stem cells towards neural progenitor cells
BACKGROUND:Emerging studies of human pluripotent stem cells (hPSCs) raise new prospects for neurodegenerative disease modeling and cell replacement therapies. Therefore,understanding the mechanisms underlying the commitment of neural progenitor cells (NPCs) is important for the application of hPSCs in neurodegenerative disease therapies. It has been reported that epigenetic modifications of histones play important roles in neural differentiation,but the exact mechanisms in regulating hPSC differentiation towards NPCs are not fully elucidated.RESULTS:We demonstrated that suppression of histone deacetylases (HDACs) promoted the differentiation of hPSCs towards NPCs. Application of HDAC inhibitors (HDACi) increased the expression of neuroectodermal markers and enhanced the neuroectodermal specification once neural differentiation was initiated,thereby leading to more NPC generation. Similarly,the transcriptome analysis showed that HDACi increased the expression levels of ectodermal markers and triggered the NPC differentiation related pathways,while decreasing the expression levels of endodermal and mesodermal markers. Furthermore,we documented that HDAC3 but not HDAC1 or HDAC2 was the critical regulator participating in NPC differentiation,and knockdown of HDAC3's cofactor SMRT exhibited a similar effect as HDAC3 on NPC generation.CONCLUSIONS:Our study reveals that HDACs,especially HDAC3,negatively regulate the differentiation of hPSCs towards NPCs at an earlier stage of neural differentiation. Moreover,HDAC3 might function by forming a repressor complex with its cofactor SMRT during this process. Thus,our findings uncover an important epigenetic mechanism of HDAC3 in the differentiation of hPSCs towards NPCs.
View Publication
产品类型:
产品号#:
07920
72302
72304
72307
72308
85850
85857
产品名:
ACCUTASE™
Y-27632(二盐酸盐)
Y-27632(二盐酸盐)
Y-27632(二盐酸盐)
Y-27632(二盐酸盐)
mTeSR™1
mTeSR™1
文献
Song W et al. (OCT 2016)
Journal of Biomedical Materials Research - Part A 104 3 678--687
Efficient generation of endothelial cells from human pluripotent stem cells and characterization of their functional properties
Although endothelial cells (ECs) have been derived from human pluripotent stem cells (hPSCs),large-scale generation of hPSC-ECs remains challenging and their functions are not well characterized. Here we report a simple and efficient three-stage method that allows generation of approximately 98 and 9500 ECs on day 16 and day 34,respectively,from each human embryonic stem cell (hESC) input. The functional properties of hESC-ECs derived in the presence and absence of a TGF$$-inhibitory molecule SB431542 were characterized and compared with those of human umbilical vein endothelial cells (HUVECs). Confluent monolayers formed by SB431542(+) hESC-ECs,SB431542(-) hESC-ECs,and HUVECs showed similar permeability to 10,000 Da dextran,but these cells exhibited striking differences in forming tube-like structures in 3D fibrin gels. The SB431542(+) hESC-ECs were most potent in forming tube-like structures regardless of whether VEGF and bFGF were present in the medium; less potent SB431542(-) hESC-ECs and HUVECs responded differently to VEGF and bFGF,which significantly enhanced the ability of HUVECs to form tube-like structures but had little impact on SB431542(-) hESC-ECs. This study offers an efficient approach to large-scale hPSC-EC production and suggests that the phenotypes and functions of hPSC-ECs derived under different conditions need to be thoroughly examined before their use in technology development. This article is protected by copyright. All rights reserved.
View Publication
产品类型:
产品号#:
07923
27215
27250
27216
27217
27260
27270
36254
85850
85857
产品名:
Dispase (1 U/mL)
37µm可逆滤筛,小 (15 mL)
37µm可逆滤筛,大 (50 mL)
70µm可逆滤筛,小 (15 mL)
100µm可逆滤筛,小 (15 mL)
70µm可逆滤筛,大 (50 mL)
100µm可逆滤筛,大 (50 mL)
DMEM/F-12 with 15 mM HEPES
mTeSR™1
mTeSR™1
文献
Cai J et al. (APR 2010)
Journal of Biological Chemistry 285 15 11227--34
Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells
The umbilical cord and placenta are extra-embryonic tissues of particular interest for regenerative medicine. They share an early developmental origin and are a source of vast amounts of cells with multilineage differentiation potential that are poorly immunogenic and without controversy. Moreover,these cells are likely exempt from incorporated mutations when compared with juvenile or adult donor cells such as skin fibroblasts or keratinocytes. Here we report the efficient generation of induced pluripotent stem cells (iPSCs) from mesenchymal cells of the umbilical cord matrix (up to 0.4% of the cells became reprogrammed) and the placental amniotic membrane (up to 0.1%) using exogenous factors and a chemical mixture. iPSCs from these 2 tissues homogeneously showed human embryonic stem cell (hESC)-like characteristics including morphology,positive staining for alkaline phosphatase,normal karyotype,and expression of hESC-like markers including Nanog,Rex1,Oct4,TRA-1-60,TRA-1-80,SSEA-3,and SSEA-4. Selected clones also formed embryonic bodies and teratomas containing derivatives of the 3 germ layers,and could as well be readily differentiated into functional motor neurons. Among other things,our cell lines may prove useful for comparisons between iPSCs derived from multiple tissues regarding the extent of the epigenetic reprogramming,differentiation ability,stability of the resulting lineages,and the risk of associated abnormalities.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Ungrin MD et al. (APR 2012)
Biotechnology and bioengineering 109 4 853--66
Rational bioprocess design for human pluripotent stem cell expansion and endoderm differentiation based on cellular dynamics.
We present a predictive bioprocess design strategy employing cell- and molecular-level analysis of rate-limiting steps in human pluripotent stem cell (hPSC) expansion and differentiation,and apply it to produce definitive endoderm (DE) progenitors using a scalable directed-differentiation technology. We define a bioprocess optimization parameter (L; targeted cell Loss) and,with quantitative cell division tracking and fate monitoring,identify and overcome key suspension bioprocess bottlenecks. Adapting process operating conditions to pivotal parameters (single cell survival and growth rate) in a cell-line-specific manner enabled adherent-equivalent expansion of hPSCs in feeder- and matrix-free defined-medium suspension culture. Predominantly instructive differentiation mechanisms were found to underlie a subsequent 18-fold expansion,during directed differentiation,to high-purity DE competent for further commitment along pancreatic and hepatic lineages. This study demonstrates that iPSC expansion and differentiation conditions can be prospectively specified to guide the enhanced production of target cells in a scale-free directed differentiation system.
View Publication
产品类型:
产品号#:
产品名:
文献
Ermakov A et al. (NOV 2012)
Stem Cell Research 9 3 171--184
A role for intracellular calcium downstream of G-protein signaling in undifferentiated human embryonic stem cell culture
Multiple signalling pathways maintain human embryonic stem cells (hESC) in an undifferentiated state. Here we sought to define the significance of G protein signal transduction in the preservation of this state distinct from other cellular processes. Continuous treatment with drugs targeting G(αs)-,G(α-i/o)- and G(α-q/11)-subunit signalling mediators were assessed in independent hESC lines after 7days to discern effects on normalised alkaline phosphatase positive colony frequency vs total cell content. This identified PLCβ,intracellular free calcium and CAMKII kinase activity downstream of G(α-q/11) as of particular importance to the former. To confirm the significance of this finding we generated an agonist-responsive hESC line transgenic for a G(α-q/11) subunit-coupled receptor and demonstrated that an undifferentiated state could be promoted in the presence of an agonist without exogenously supplied bFGF and that this correlated with elevated intracellular calcium. Similarly,treatment of unmodified hESCs with a range of intracellular free calcium-modulating drugs in biologically defined mTESR culture system lacking exogenous bFGF promoted an hESC phenotype after 1week of continuous culture as defined by co-expression of OCT4 and NANOG. At least one of these drugs,lysophosphatidic acid significantly elevates phosphorylation of calmodulin and STAT3 in this culture system (ptextless0.05). These findings substantiate a role for G-protein and calcium signalling in undifferentiated hESC culture.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Thomas RJ et al. (APR 2009)
Biotechnology and Bioengineering 102 6 1636--1644
Automated, scalable culture of human embryonic stem cells in feeder-free conditions.
Large-scale manufacture of human embryonic stem cells (hESCs) is prerequisite to their widespread use in biomedical applications. However,current hESC culture strategies are labor-intensive and employ highly variable processes,presenting challenges for scaled production and commercial development. Here we demonstrate that passaging of the hESC lines,HUES7,and NOTT1,with trypsin in feeder-free conditions,is compatible with complete automation on the CompacT SelecT,a commercially available and industrially relevant robotic platform. Pluripotency was successfully retained,as evidenced by consistent proliferation during serial passage,expression of stem cell markers (OCT4,NANOG,TRA1-81,and SSEA-4),stable karyotype,and multi-germlayer differentiation in vitro,including to pharmacologically responsive cardiomyocytes. Automation of hESC culture will expedite cell-use in clinical,scientific,and industrial applications.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Zhu X et al. (JUL 2010)
Molecular cancer therapeutics 9 7 2131--41
Identification of internalizing human single-chain antibodies targeting brain tumor sphere cells.
Glioblastoma multiforme (GBM) is the most common and aggressive form of primary brain tumor for which there is no curative treatment to date. Resistance to conventional therapies and tumor recurrence pose major challenges to treatment and management of this disease,and therefore new therapeutic strategies need to be developed. Previous studies by other investigators have shown that a subpopulation of GBM cells can grow as neurosphere-like cells when cultured in restrictive medium and exhibits enhanced tumor-initiating ability and resistance to therapy. We report here the identification of internalizing human single-chain antibodies (scFv) targeting GBM tumor sphere cells. We selected a large naive phage antibody display library on the glycosylation-dependent CD133 epitope-positive subpopulation of GBM cells grown as tumor spheres and identified internalizing scFvs that target tumor sphere cells broadly,as well as scFvs that target the CD133-positive subpopulation. These scFvs were found to be efficiently internalized by GBM tumor sphere cells. One scFv GC4 inhibited self-renewal of GBM tumor sphere cells in vitro. We have further developed a full-length human IgG1 based on this scFv,and found that it potently inhibits proliferation of GBM tumor sphere cells and GBM cells grown in regular nonselective medium. Taken together,these results show that internalizing human scFvs targeting brain tumor sphere cells can be readily identified from a phage antibody display library,which could be useful for further development of novel therapies that target subpopulations of GBM cells to combat recurrence and resistance to treatment.
View Publication
产品类型:
产品号#:
05751
产品名:
NeuroCult™ NS-A 扩增试剂盒(人)
文献
Zhu S et al. (DEC 2010)
Cell stem cell 7 6 651--5
Reprogramming of human primary somatic cells by OCT4 and chemical compounds.
Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes Under Defined Conditions.
Human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) can differentiate to cardiomyocytes in vitro,offering unique opportunities to investigate cardiac development and disease as well as providing a platform to perform drug and toxicity tests. Initial cardiac differentiation methods were based on either inductive co-culture or aggregation as embryoid bodies,often in the presence of fetal calf serum. More recently,monolayer differentiation protocols have evolved as feasible alternatives and are often performed in completely defined culture medium and substrates. Thus,our ability to efficiently and reproducibly generate cardiomyocytes from multiple different hESC and hiPSC lines has improved significantly.We have developed a directed differentiation monolayer protocol that can be used to generate cultures comprising ˜50% cardiomyocytes,in which both the culture of the undifferentiated human pluripotent stem cells (hPSCs) and the differentiation procedure itself are defined and serum-free. The differentiation method is also effective for hPSCs maintained in other culture systems. In this chapter,we outline the differentiation protocol and describe methods to assess cardiac differentiation efficiency as well as to identify and quantify the yield of cardiomyocytes.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Pei S et al. (NOV 2013)
The Journal of biological chemistry 288 47 33542--58
Targeting aberrant glutathione metabolism to eradicate human acute myelogenous leukemia cells.
The development of strategies to eradicate primary human acute myelogenous leukemia (AML) cells is a major challenge to the leukemia research field. In particular,primitive leukemia cells,often termed leukemia stem cells,are typically refractory to many forms of therapy. To investigate improved strategies for targeting of human AML cells we compared the molecular mechanisms regulating oxidative state in primitive (CD34(+)) leukemic versus normal specimens. Our data indicate that CD34(+) AML cells have elevated expression of multiple glutathione pathway regulatory proteins,presumably as a mechanism to compensate for increased oxidative stress in leukemic cells. Consistent with this observation,CD34(+) AML cells have lower levels of reduced glutathione and increased levels of oxidized glutathione compared with normal CD34(+) cells. These findings led us to hypothesize that AML cells will be hypersensitive to inhibition of glutathione metabolism. To test this premise,we identified compounds such as parthenolide (PTL) or piperlongumine that induce almost complete glutathione depletion and severe cell death in CD34(+) AML cells. Importantly,these compounds only induce limited and transient glutathione depletion as well as significantly less toxicity in normal CD34(+) cells. We further determined that PTL perturbs glutathione homeostasis by a multifactorial mechanism,which includes inhibiting key glutathione metabolic enzymes (GCLC and GPX1),as well as direct depletion of glutathione. These findings demonstrate that primitive leukemia cells are uniquely sensitive to agents that target aberrant glutathione metabolism,an intrinsic property of primary human AML cells.
View Publication