Park Y et al. (MAR 2014)
Journal of Biotechnology 174 1 39--48
Hepatic differentiation of human embryonic stem cells on microcarriers
Translation of stem cell research to industrial and clinical settings mostly requires large quantities of cells,especially those involving large organs such as the liver. A scalable reactor system is desirable to ensure a reliable supply of sufficient quantities of differentiated cells. To increase the culture efficiency in bioreactor system,high surface to volume ratio needs to be achieved. We employed a microcarrier culture system for the expansion of undifferentiated human embryonic stem cells (hESCs) as well as for directed differentiation of these cells to hepatocyte-like cells. Cells in single cell suspension were attached to the bead surface in even distribution and were expanded to 1??106cells/ml within 2 days of hESC culture with maintenance of the level of pluripotency markers. Directed differentiation into hepatocyte-like cells on microcarriers,both in static culture and stirred bioreactors,induced similar levels of hepatocyte-like cell differentiation as observed with cells cultured in conventional tissue culture plates. The cells expressed both immature and mature hepatocyte-lineage genes and proteins such as asialoglycoprotein receptor-1 (ASGPR-1) and albumin. Differentiated cells exhibited functional characteristics such as secretion of albumin and urea,and CYP3A4 activity could be detected. Microcarriers thus offer the potential for large-scale expansion and differentiation of hESCs induced hepatocyte-like cells in a more controllable bioreactor environment. ?? 2014.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Genga RM et al. (MAY 2016)
Methods 101 36--42
Controlling transcription in human pluripotent stem cells using CRISPR-effectors
The ability to manipulate transcription in human pluripotent stem cells (hPSCs) is fundamental for the discovery of key genes and mechanisms governing cellular state and differentiation. Recently developed CRISPR-effector systems provide a systematic approach to rapidly test gene function in mammalian cells,including hPSCs. In this review,we discuss recent advances in CRISPR-effector technologies that have been employed to control transcription through gene activation,gene repression,and epigenome engineering. We describe an application of CRISPR-effector mediated transcriptional regulation in hPSCs by targeting a synthetic promoter driving a GFP transgene,demonstrating the ease and effectiveness of CRISPR-effector mediated transcriptional regulation in hPSCs.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Castañ et al. (FEB 2016)
PLoS ONE 11 2 e0149502
SETD7 regulates the differentiation of human embryonic stem cells
The successful use of specialized cells in regenerative medicine requires an optimization in the differentiation protocols that are currently used. Understanding the molecular events that take place during the differentiation of human pluripotent cells is essential for the improvement of these protocols and the generation of high quality differentiated cells. In an effort to understand the molecular mechanisms that govern differentiation we identify the methyltransferase SETD7 as highly induced during the differentiation of human embryonic stem cells and differentially expressed between induced pluripotent cells and somatic cells. Knock-down of SETD7 causes differentiation defects in human embryonic stem cell including delay in both the silencing of pluripotency-related genes and the induction of differentiation genes. We show that SETD7 methylates linker histone H1 in vitro causing conformational changes in H1. These effects correlate with a decrease in the recruitment of H1 to the pluripotency genes OCT4 and NANOG during differentiation in the SETD7 knock down that might affect the proper silencing of these genes during differentiation.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Sliwa A et al. (SEP 2009)
Genes & nutrition 4 3 195--8
Differentiation of human adipose tissue SVF cells into cardiomyocytes.
Progenitor cells have been extensively studied and therapeutically applied in tissue reconstructive therapy. Stromal vascular fraction (SVF) cells,which are derived from adipose tissue,may represent a potential source of the cells which undergo phenotypical differentiation into many lineages both in vitro as well as in vivo. The goal of this study was to check whether human SVF cells may differentiate into cardiomyocyte-like entities. Human SVF cells were induced to differentiate by their incubation in Methocult medium in the presence of SCF,IL-3 and IL-6. Morphological transformation of the cells was monitored using optical light microscope,whereas changes in expression of the genes typical for cardiac phenotype were measured by qRT-PCR. Incubation of the human SVF cells in the medium that promotes cardiomyocyte differentiation in vitro resulted in formation of myotubule-like structures accompanied by up-regulation of the myocardium-characteristic genes,such as GATA,MEF2C,MYOD1,but not ANP. Human SVF cells differentiate into cardiomyocyte-like cells in the presence of the certain set of myogenesis promoting cytokines.
View Publication
Directed Differentiation of Human Pluripotent Stem Cells to Microglia.
Microglia,the immune cells of the brain,are crucial to proper development and maintenance of the CNS,and their involvement in numerous neurological disorders is increasingly being recognized. To improve our understanding of human microglial biology,we devised a chemically defined protocol to generate human microglia from pluripotent stem cells. Myeloid progenitors expressing CD14/CX3CR1 were generated within 30 days of differentiation from both embryonic and induced pluripotent stem cells (iPSCs). Further differentiation of the progenitors resulted in ramified microglia with highly motile processes,expressing typical microglial markers. Analyses of gene expression and cytokine release showed close similarities between iPSC-derived (iPSC-MG) and human primary microglia as well as clear distinctions from macrophages. iPSC-MG were able to phagocytose and responded to ADP by producing intracellular Ca(2+) transients,whereas macrophages lacked such response. The differentiation protocol was highly reproducible across several pluripotent stem cell lines.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
R. J. Ihry et al. ( 2018)
Nature Medicine
P53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells
Economic development has become a prominent issue for state governments. Nevertheless,states vary in the economic policies they choose. Two general approaches to the issue are discussed: the maintenance/attraction strategy and the creation strategy. Factor analysis allows us to gauge state effort on these two criteria. Regression analysis shows that political culture is an important factor in predicting which approach a state chooses,with traditionalistic states favoring the maintenance/attraction strategy,and moralistic states favoring the creation alternative. Other predictors of state policy choices include the condition of the economy and the diffusion of innovations. Also discussed is the interaction of political culture with other relevant variables in shaping state policies.
产品类型:
产品号#:
产品名:
文献
N. H. Overgaard et al. ( 2015)
Frontiers in genetics 6 286
Establishing the pig as a large animal model for vaccine development against human cancer.
Immunotherapy has increased overall survival of metastatic cancer patients,and cancer antigens are promising vaccine targets. To fulfill the promise,appropriate tailoring of the vaccine formulations to mount in vivo cytotoxic T cell (CTL) responses toward co-delivered cancer antigens is essential. Previous development of therapeutic cancer vaccines has largely been based on studies in mice,and the majority of these candidate vaccines failed to induce therapeutic responses in the subsequent human clinical trials. Given that antigen dose and vaccine volume in pigs are translatable to humans and the porcine immunome is closer related to the human counterpart,we here introduce pigs as a supplementary large animal model for human cancer vaccine development. IDO and RhoC,both important in human cancer development and progression,were used as vaccine targets and 12 pigs were immunized with overlapping 20mer peptides spanning the entire porcine IDO and RhoC sequences formulated in CTL-inducing adjuvants: CAF09,CASAC,Montanide ISA 51 VG,or PBS. Taking advantage of recombinant swine MHC class I molecules (SLAs),the peptide-SLA complex stability was measured for 198 IDO- or RhoC-derived 9-11mer peptides predicted to bind to SLA-1(*)04:01,-1(*)07:02,-2(*)04:01,-2(*)05:02,and/or -3(*)04:01. This identified 89 stable (t½ ≥ 0.5 h) peptide-SLA complexes. By IFN-$\gamma$ release in PBMC cultures we monitored the vaccine-induced peptide-specific CTL responses,and found responses to both IDO- and RhoC-derived peptides across all groups with no adjuvant being superior. These findings support the further use of pigs as a large animal model for vaccine development against human cancer.
View Publication
产品类型:
产品号#:
85415
85420
85450
85460
产品名:
SepMate™-15 (IVD)
SepMate™-15 (IVD)
SepMate™-50 (IVD)
SepMate™-50 (IVD)
文献
Haniffa MA et al. (AUG 2007)
Journal of immunology (Baltimore,Md. : 1950) 179 3 1595--604
Adult human fibroblasts are potent immunoregulatory cells and functionally equivalent to mesenchymal stem cells.
Bone marrow mesenchymal stem cells (MSC) have potent immunosuppressive properties and have been advocated for therapeutic use in humans. The nature of their suppressive capacity is poorly understood but is said to be a primitive stem cell function. Demonstration that adult stromal cells such as fibroblasts (Fb) can modulate T cells would have important implications for immunoregulation and cellular therapy. In this report,we show that dermal Fb inhibit allogeneic T cell activation by autologously derived cutaneous APCs and other stimulators. Fb mediate suppression through soluble factors,but this is critically dependent on IFN-gamma from activated T cells. IFN-gamma induces IDO in Fb,and accelerated tryptophan metabolism is at least partly responsible for suppression of T cell proliferation. T cell suppression is reversible,and transient exposure to Fb during activation reprograms T cells,increasing IL-4 and IL-10 secretion upon restimulation. Increased Th2 polarization by stromal cells is associated with amelioration of pathological changes in a human model of graft-vs-host disease. Dermal Fb are highly clonogenic in vitro,suggesting that Fb-mediated immunosuppression is not due to outgrowth of rare MSC,although dermal Fb remain difficult to distinguish from MSC by phenotype or transdifferentiation capacity. These results suggest that immunosuppression is a general property of stromal cells and that dermal Fb may provide an alternative and accessible source of cellular therapy.
View Publication
产品类型:
产品号#:
15021
15061
产品名:
RosetteSep™人T细胞富集抗体混合物
RosetteSep™人T细胞富集抗体混合物
文献
Kunisada Y et al. (MAR 2012)
Stem cell research 8 2 274--84
Small molecules induce efficient differentiation into insulin-producing cells from human induced pluripotent stem cells.
Human induced pluripotent stem (hiPS) cells have potential uses for drug discovery and cell therapy,including generation of pancreatic β-cells for diabetes research and treatment. In this study,we developed a simple protocol for generating insulin-producing cells from hiPS cells. Treatment with activin A and a GSK3β inhibitor enhanced efficient endodermal differentiation,and then combined treatment with retinoic acid,a bone morphogenic protein inhibitor,and a transforming growth factor-β (TGF-β) inhibitor induced efficient differentiation of pancreatic progenitor cells from definitive endoderm. Expression of the pancreatic progenitor markers PDX1 and NGN3 was significantly increased at this step and most cells were positive for anti-PDX1 antibody. Moreover,several compounds,including forskolin,dexamethasone,and a TGF-β inhibitor,were found to induce the differentiation of insulin-producing cells from pancreatic progenitor cells. By combined treatment with these compounds,more than 10% of the cells became insulin positive. The differentiated cells secreted human c-peptide in response to various insulin secretagogues. In addition,all five hiPS cell lines that we examined showed efficient differentiation into insulin-producing cells with this protocol.
View Publication
产品类型:
产品号#:
72052
72054
72392
72394
产品名:
CHIR99021
CHIR99021
RepSox(盐酸盐)
RepSox(盐酸盐)
文献
Li W et al. (OCT 2016)
Molecular psychiatry
Characterization and transplantation of enteric neural crest cells from human induced pluripotent stem cells.
The enteric nervous system (ENS) is recognized as a second brain because of its complexity and its largely autonomic control of bowel function. Recent progress in studying the interactions between the ENS and the central nervous system (CNS) has implicated alterations of the gut/brain axis as a possible mechanism in the pathophysiology of autism spectrum disorders (ASDs),Parkinson's disease (PD) and other human CNS disorders,whereas the underlying mechanisms are largely unknown because of the lack of good model systems. Human induced pluripotent stem cells (hiPSCs) have the ability to proliferate indefinitely and differentiate into cells of all three germ layers,thus making iPSCs an ideal source of cells for disease modelling and cell therapy. Here,hiPSCs were induced to differentiate into neural crest stem cells (NCSCs) efficiently. When co-cultured with smooth muscle layers of ganglionic gut tissue,the NCSCs differentiated into different subtypes of mature enteric-like neurons expressing nitric oxide synthase (nNOS),vasoactive intestinal polypeptide (VIP),choline acetyltransferase (ChAT) or calretinin with typical electrophysiological characteristics of functional neurons. Furthermore,when they were transplanted into aneural or aganglionic chick,mouse or human gut tissues in ovo,in vitro or in vivo,hiPSC-derived NCSCs showed extensive migration and neural differentiation capacity,generating neurons and glial cells that expressed phenotypic markers characteristic of the enteric nervous system. Our results indicate that enteric NCSCs derived from hiPSCs supply a powerful tool for studying the pathogenesis of gastrointestinal disorders and brain/gut dysfunction and represent a potentially ideal cell source for enteric neural transplantation treatments.Molecular Psychiatry advance online publication,25 October 2016; doi:10.1038/mp.2016.191.
View Publication