Gallo M et al. (JAN 2013)
Cancer Research 73 1 417--427
A Tumorigenic MLL-Homeobox Network in Human Glioblastoma Stem Cells
Glioblastoma growth is driven by cancer cells that have stem cell properties,but molecular determinants of their tumorigenic behavior are poorly defined. In cancer,altered activity of the epigenetic modifiers Polycomb and Trithorax complexes may contribute to the neoplastic phenotype. Here,we provide the first mechanistic insights into the role of the Trithorax protein mixed lineage leukemia (MLL) in maintaining cancer stem cell characteristics in human glioblastoma. We found that MLL directly activates the Homeobox gene HOXA10. In turn,HOXA10 activates a downstream Homeobox network and other genes previously characterized for their role in tumorigenesis. The MLL-Homeobox axis we identified significantly contributes to the tumorigenic potential of glioblastoma stem cells. Our studies suggest a role for MLL in contributing to the epigenetic heterogeneity between tumor-initiating and non-tumor-initiating cells in glioblastoma.
View Publication
产品类型:
产品号#:
05750
产品名:
NeuroCult™ NS-A 基础培养基(人)
文献
Singh A et al. (MAY 2013)
Nature Methods 10 5 438--444
Adhesion strength-based, label-free isolation of human pluripotent stem cells
We demonstrate substantial differences in 'adhesive signature' between human pluripotent stem cells (hPSCs),partially reprogrammed cells,somatic cells and hPSC-derived differentiated progeny. We exploited these differential adhesion strengths to rapidly (over approximately 10 min) and efficiently isolate fully reprogrammed induced hPSCs (hiPSCs) as intact colonies from heterogeneous reprogramming cultures and from differentiated progeny using microfluidics. hiPSCs were isolated label free,enriched to 95%-99% purity with textgreater80% survival,and had normal transcriptional profiles,differentiation potential and karyotypes. We also applied this strategy to isolate hPSCs (hiPSCs and human embryonic stem cells) during routine culture and show that it may be extended to isolate hPSC-derived lineage-specific stem cells or differentiated cells.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Zhang P et al. (SEP 2014)
Journal of visualized experiments : JoVE 91 51737
Directed dopaminergic neuron differentiation from human pluripotent stem cells.
Dopaminergic (DA) neurons in the substantia nigra pars compacta (also known as A9 DA neurons) are the specific cell type that is lost in Parkinson's disease (PD). There is great interest in deriving A9 DA neurons from human pluripotent stem cells (hPSCs) for regenerative cell replacement therapy for PD. During neural development,A9 DA neurons originate from the floor plate (FP) precursors located at the ventral midline of the central nervous system. Here,we optimized the culture conditions for the stepwise differentiation of hPSCs to A9 DA neurons,which mimics embryonic DA neuron development. In our protocol,we first describe the efficient generation of FP precursor cells from hPSCs using a small molecule method,and then convert the FP cells to A9 DA neurons,which could be maintained in vitro for several months. This efficient,repeatable and controllable protocol works well in human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) from normal persons and PD patients,in which one could derive A9 DA neurons to perform in vitro disease modeling and drug screening and in vivo cell transplantation therapy for PD.
View Publication
Tissue-Engineered Vascular Rings from Human iPSC-Derived Smooth Muscle Cells
There is an urgent need for an efficient approach to obtain a large-scale and renewable source of functional human vascular smooth muscle cells (VSMCs) to establish robust,patient-specific tissue model systems for studying the pathogenesis of vascular disease,and for developing novel therapeutic interventions. Here,we have derived a large quantity of highly enriched functional VSMCs from human induced pluripotent stem cells (hiPSC-VSMCs). Furthermore,we have engineered 3D tissue rings from hiPSC-VSMCs using a facile one-step cellular self-assembly approach. The tissue rings are mechanically robust and can be used for vascular tissue engineering and disease modeling of supravalvular aortic stenosis syndrome. Our method may serve as a model system,extendable to study other vascular proliferative diseases for drug screening. Thus,this report describes an exciting platform technology with broad utility for manufacturing cell-based tissues and materials for various biomedical applications.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Oh SKW et al. (MAY 2009)
Stem Cell Research 2 3 219--230
Long-term microcarrier suspension cultures of human embryonic stem cells
The conventional method of culturing human embryonic stem cells (hESC) is on two-dimensional (2D) surfaces,which is not amenable for scale up to therapeutic quantities in bioreactors. We have developed a facile and robust method for maintaining undifferentiated hESC in three-dimensional (3D) suspension cultures on matrigel-coated microcarriers achieving 2- to 4-fold higher cell densities than those in 2D colony cultures. Stable,continuous propagation of two hESC lines on microcarriers has been demonstrated in conditioned media for 6 months. Microcarrier cultures (MC) were also demonstrated in two serum-free defined media (StemPro and mTeSR1). MC achieved even higher cell concentrations in suspension spinner flasks,thus opening the prospect of propagation in controlled bioreactors. ?? 2009 Elsevier B.V. All rights reserved.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Yao M et al. (JAN 2010)
Cells,tissues,organs 191 3 203--12
Prostate-regenerating capacity of cultured human adult prostate epithelial cells.
Experimentation with the progenitor/stem cells in adult prostate epithelium can be inconvenient due to a tight time line from tissue acquisition to cell isolation and to downstream experiments. To circumvent this inconvenience,we developed a simple technical procedure for culturing epithelial cells derived from human prostate tissue. In this study,benign prostate tissue was enzymatically digested and fractionated into epithelium and stroma,which were then cultured in the medium designed for prostate epithelial and stromal cells,respectively. The cultured cells were analyzed by immunocytochemical staining and flow cytometry. Prostate tissue-regenerating capacity of cultured cells in vitro was determined by co-culturing epithelial and stromal cells in dihydrotestosterone-containing RPMI. Cell lineages in formed acini-like structures were determined by immunohistochemistry. The culture of epithelial cells mainly consisted of basal cells. A minor population was negative for known lineage markers and positive for CD133. The culture also contained cells with high activity of aldehyde dehydrogenase. After co-culturing with stromal cells,the epithelial cells were able to form acini-like structures containing multiple cell lineages. Thus,the established culture of prostate epithelial cells provides an alternative source for studying progenitor/stem cells of prostate epithelium.
View Publication
D. P. Dever et al. (NOV 2016)
Nature 539 7629 384--389
CRISPR/Cas9 $\beta$-globin gene targeting in human haematopoietic stem cells.
The $\beta$-haemoglobinopathies,such as sickle cell disease and $\beta$-thalassaemia,are caused by mutations in the $\beta$-globin (HBB) gene and affect millions of people worldwide. Ex vivo gene correction in patient-derived haematopoietic stem cells followed by autologous transplantation could be used to cure $\beta$-haemoglobinopathies. Here we present a CRISPR/Cas9 gene-editing system that combines Cas9 ribonucleoproteins and adeno-associated viral vector delivery of a homologous donor to achieve homologous recombination at the HBB gene in haematopoietic stem cells. Notably,we devise an enrichment model to purify a population of haematopoietic stem and progenitor cells with more than 90{\%} targeted integration. We also show efficient correction of the Glu6Val mutation responsible for sickle cell disease by using patient-derived stem and progenitor cells that,after differentiation into erythrocytes,express adult $\beta$-globin (HbA) messenger RNA,which confirms intact transcriptional regulation of edited HBB alleles. Collectively,these preclinical studies outline a CRISPR-based methodology for targeting haematopoietic stem cells by homologous recombination at the HBB locus to advance the development of next-generation therapies for $\beta$-haemoglobinopathies.
View Publication
产品类型:
产品号#:
09605
09655
产品名:
StemSpan™ SFEM II
StemSpan™ SFEM II
文献
Jeon ES et al. (MAR 2008)
Stem cells (Dayton,Ohio) 26 3 789--97
Cancer-derived lysophosphatidic acid stimulates differentiation of human mesenchymal stem cells to myofibroblast-like cells.
Lysophosphatidic acid (LPA) is enriched in ascites of ovarian cancer patients and is involved in growth and invasion of ovarian cancer cells. Accumulating evidence suggests cancer-associated myofibroblasts play a pivotal role in tumorigenesis through secreting stromal cell-derived factor-1 (SDF-1). In the present study,we demonstrate that LPA induces expression of alpha-smooth muscle actin (alpha-SMA),a marker for myofibroblasts,in human adipose tissue-derived mesenchymal stem cells (hADSCs). The LPA-induced expression of alpha-SMA was completely abrogated by pretreatment of the cells with Ki16425,an antagonist of LPA receptors,or by silencing LPA(1) or LPA(2) isoform expression with small interference RNA (siRNA). LPA elicited phosphorylation of Smad2/3,and siRNA-mediated depletion of endogenous Smad2/3 or adenoviral expression of Smad7,an inhibitory Smad,abrogated the LPA induced expression of alpha-SMA and phosphorylation of Smad2/3. LPA-induced secretion of transforming growth factor (TGF)-beta1 in hADSCs,and pretreatment of the cells with SB431542,a TGF-beta type I receptor kinase inhibitor,or anti-TGF-beta1 neutralizing antibody inhibited the LPA-induced expression of alpha-SMA and phosphorylation of Smad2. Furthermore,ascites from ovarian cancer patients or conditioned medium from ovarian cancer cells induced expression of alpha-SMA and phosphorylation of Smad2,and pretreatment of the cells with Ki16425 or SB431542 abrogated the expression of alpha-SMA and phosphorylation of Smad2. In addition,LPA increased the expression of SDF-1 in hADSCs,and pretreatment of the cells with Ki16425 or SB431562 attenuated the LPA-stimulated expression of SDF-1. These results suggest that cancer-derived LPA stimulates differentiation of hADSCs to myofibroblast-like cells and increases SDF-1 expression through activating autocrine TGF-beta1-Smad signaling pathway.
View Publication
产品类型:
产品号#:
72694
产品名:
1-Oleoyl Lysophosphatidic Acid (Sodium Salt)
文献
Kozhich OA et al. (AUG 2013)
Stem Cell Reviews and Reports 9 4 531--536
Standardized Generation and Differentiation of Neural Precursor Cells from Human Pluripotent Stem Cells
Precise,robust and scalable directed differentiation of pluripotent stem cells is an important goal with respect to disease modeling or future therapies. Using the AggreWell™400 system we have standardized the differentiation of human embryonic and induced pluripotent stem cells to a neuronal fate using defined conditions. This allows reproducibility in replicate experiments and facilitates the direct comparison of cell lines. Since the starting point for EB formation is a single cell suspension,this protocol is suitable for standard and novel methods of pluripotent stem cell culture. Moreover,an intermediate population of neural precursor cells,which are routinely textgreater95% NCAM(pos) and Tra-1-60(neg) by FACS analysis,may be expanded and frozen prior to differentiation allowing a convenient starting point for downstream experiments.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Momcilovic O et al. (JAN 2010)
PLoS ONE 5 10 e13410
DNA damage responses in human induced pluripotent stem cells and embryonic stem cells.
BACKGROUND: Induced pluripotent stem (iPS) cells have the capability to undergo self-renewal and differentiation into all somatic cell types. Since they can be produced through somatic cell reprogramming,which uses a defined set of transcription factors,iPS cells represent important sources of patient-specific cells for clinical applications. However,before these cells can be used in therapeutic designs,it is essential to understand their genetic stability. METHODOLOGY/PRINCIPAL FINDINGS: Here,we describe DNA damage responses in human iPS cells. We observe hypersensitivity to DNA damaging agents resulting in rapid induction of apoptosis after γ-irradiation. Expression of pluripotency factors does not appear to be diminished after irradiation in iPS cells. Following irradiation,iPS cells activate checkpoint signaling,evidenced by phosphorylation of ATM,NBS1,CHEK2,and TP53,localization of ATM to the double strand breaks (DSB),and localization of TP53 to the nucleus of NANOG-positive cells. We demonstrate that iPS cells temporary arrest cell cycle progression in the G(2) phase of the cell cycle,displaying a lack of the G(1)/S cell cycle arrest similar to human embryonic stem (ES) cells. Furthermore,both cell types remove DSB within six hours of γ-irradiation,form RAD51 foci and exhibit sister chromatid exchanges suggesting homologous recombination repair. Finally,we report elevated expression of genes involved in DNA damage signaling,checkpoint function,and repair of various types of DNA lesions in ES and iPS cells relative to their differentiated counterparts. CONCLUSIONS/SIGNIFICANCE: High degrees of similarity in DNA damage responses between ES and iPS cells were found. Even though reprogramming did not alter checkpoint signaling following DNA damage,dramatic changes in cell cycle structure,including a high percentage of cells in the S phase,increased radiosensitivity and loss of DNA damage-induced G(1)/S cell cycle arrest,were observed in stem cells generated by induced pluripotency.
View Publication