SALL4 is a robust stimulator for the expansion of hematopoietic stem cells.
HSCs are rare cells that have the unique ability to self-renew and differentiate into cells of all hematopoietic lineages. The lack of donors and current inability to rapidly and efficiently expand HSCs are roadblocks in the development of successful cell therapies. Thus,the challenge of ex vivo human HSC expansion remains a fertile and critically important area of investigation. Here,we show that either SALL4A- or SALL4B-transduced human HSCs obtained from the mobilized peripheral blood are capable of rapid and efficient expansion ex vivo by textgreater10 000-fold for both CD34(+)/CD38(-) and CD34(+)/CD38(+) cells in the presence of appropriate cytokines. We found that these cells retained hematopoietic precursor cell immunophenotypes and morphology as well as normal in vitro or vivo potential for differentiation. The SALL4-mediated expansion was associated with enhanced stem cell engraftment and long-term repopulation capacity in vivo. Also,we demonstrated that constitutive expression of SALL4 inhibited granulocytic differentiation and permitted expansion of undifferentiated cells in 32D myeloid progenitors. Furthermore,a TAT-SALL4B fusion rapidly expanded CD34(+) cells,and it is thus feasible to translate this study into the clinical setting. Our findings provide a new avenue for investigating mechanisms of stem cell self-renewal and achieving clinically significant expansion of human HSCs.
View Publication
产品类型:
产品号#:
09600
09650
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
文献
C. T. Charlesworth et al. (SEP 2018)
Molecular therapy. Nucleic acids 12 89--104
Priming Human Repopulating Hematopoietic Stem and Progenitor Cells for Cas9/sgRNA Gene Targeting.
Engineered nuclease-mediated gene targeting through homologous recombination (HR) in hematopoietic stem and progenitor cells (HSPCs) has the potential to treat a variety of genetic hematologic and immunologic disorders. Here,we identify critical parameters to reproducibly achieve high frequencies of RNA-guided (single-guide RNA [sgRNA]; CRISPR)-Cas9 nuclease (Cas9/sgRNA) and rAAV6-mediated HR at the $\beta$-globin (HBB) locus in HSPCs. We identified that by transducing HSPCs with rAAV6 post-electroporation,there was a greater than 2-fold electroporation-aided transduction (EAT) of rAAV6 endocytosis with roughly 70{\%} of the cell population having undergone transduction within 2 hr. When HSPCs are cultured at low densities (1 × 105 cells/mL) prior to HBB targeting,HSPC expansion rates are significantly positively correlated with HR frequencies in vitro as well as in repopulating cells in immunodeficient NSG mice in vivo. We also show that culturing fluorescence-activated cell sorting (FACS)-enriched HBB-targeted HSPCs at low cell densities in the presence of the small molecules,UM171 and SR1,stimulates the expansion of gene-edited HSPCs as measured by higher engraftment levels in immunodeficient mice. This work serves not only as an optimized protocol for genome editing HSPCs at the HBB locus for the treatment of $\beta$-hemoglobinopathies but also as a foundation for editing HSPCs at other loci for both basic and translational research.
View Publication
产品类型:
产品号#:
09605
09655
产品名:
StemSpan™ SFEM II
StemSpan™ SFEM II
文献
Chan G et al. (APR 2011)
Blood 117 16 4253--61
Essential role for Ptpn11 in survival of hematopoietic stem and progenitor cells.
Src homology 2 domain-containing phosphatase 2 (Shp2),encoded by Ptpn11,is a member of the nonreceptor protein-tyrosine phosphatase family,and functions in cell survival,proliferation,migration,and differentiation in many tissues. Here we report that loss of Ptpn11 in murine hematopoietic cells leads to bone marrow aplasia and lethality. Mutant mice show rapid loss of hematopoietic stem cells (HSCs) and immature progenitors of all hematopoietic lineages in a gene dosage-dependent and cell-autonomous manner. Ptpn11-deficient HSCs and progenitors undergo apoptosis concomitant with increased Noxa expression. Mutant HSCs/progenitors also show defective Erk and Akt activation in response to stem cell factor and diminished thrombopoietin-evoked Erk activation. Activated Kras alleviates the Ptpn11 requirement for colony formation by progenitors and cytokine/growth factor responsiveness of HSCs,indicating that Ras is functionally downstream of Shp2 in these cells. Thus,Shp2 plays a critical role in controlling the survival and maintenance of HSCs and immature progenitors in vivo.
View Publication
Ohmori T et al. (OCT 2010)
The Journal of biological chemistry 285 41 31763--73
Vinculin is indispensable for repopulation by hematopoietic stem cells, independent of integrin function.
Vinculin is a highly conserved actin-binding protein that is localized in integrin-mediated focal adhesion complexes. Although critical roles have been proposed for integrins in hematopoietic stem cell (HSC) function,little is known about the involvement of intracellular focal adhesion proteins in HSC functions. This study showed that the ability of c-Kit(+)Sca1(+)Lin(-) HSCs to support reconstitution of hematopoiesis after competitive transplantation was severely impaired by lentiviral transduction with short hairpin RNA sequences for vinculin. The potential of these HSCs to differentiate into granulocytic and monocytic lineages,to migrate toward stromal cell-derived factor 1α,and to home to the bone marrow in vivo were not inhibited by the loss of vinculin. However,the capacities to form long term culture-initiating cells and cobblestone-like areas were abolished in vinculin-silenced c-Kit(+)Sca1(+)Lin(-) HSCs. In contrast,adhesion to the extracellular matrix was inhibited by silencing of talin-1,but not of vinculin. Whole body in vivo luminescence analyses to detect transduced HSCs confirmed the role of vinculin in long term HSC reconstitution. Our results suggest that vinculin is an indispensable factor determining HSC repopulation capacity,independent of integrin functions.
View Publication
产品类型:
产品号#:
03231
03434
03444
产品名:
MethoCult™M3231
MethoCult™GF M3434
MethoCult™GF M3434
文献
Szilvassy SJ et al. (NOV 1990)
Proceedings of the National Academy of Sciences of the United States of America 87 22 8736--40
Quantitative assay for totipotent reconstituting hematopoietic stem cells by a competitive repopulation strategy.
Although hematopoiesis is known to originate in a population of very primitive cells with both lymphopoietic and myelopoietic potential,a procedure for enumerating such cells has to date not been available. We now describe a quantitative assay for long-term repopulating stem cells with the potential for reconstituting all hematopoietic lineages. This assay has two key features. The first is the use of competitive repopulation conditions that ensure not only the detection of a very primitive class of hematopoietic stem cells but also the survival of lethally irradiated mice transplanted with very low numbers of such cells. The second is the use of a limiting-dilution experimental design to allow stem cell quantitation. The assay involves transplanting limiting numbers of male test" cells into lethally irradiated syngeneic female recipients together with 1-2 x 10(5) syngeneic female marrow cells whose long-term repopulating ability has been compromised by two previous cycles of marrow transplantation. The proportion of assay recipients whose regenerated hematopoietic tissues are determined to contain greater than or equal to 5% cells of test cell origin (male) greater than or equal to 5 weeks later is then used to calculate the frequency of competitive repopulating units (CRU) in the original male test cell suspension (based on Poisson statistics). Investigation of this assay system has shown that all three potential sources of stem cells (test cells�
View Publication
产品类型:
产品号#:
28600
产品名:
L-Calc™有限稀释软件
文献
Orelio C et al. (DEC 2008)
Blood 112 13 4895--904
Interleukin-1-mediated hematopoietic cell regulation in the aorta-gonad-mesonephros region of the mouse embryo.
Hematopoiesis during development is a dynamic process,with many factors involved in the emergence and regulation of hematopoietic stem cells (HSCs) and progenitor cells. Whereas previous studies have focused on developmental signaling and transcription factors in embryonic hematopoiesis,the role of well-known adult hematopoietic cytokines in the embryonic hematopoietic system has been largely unexplored. The cytokine interleukin-1 (IL-1),best known for its proinflammatory properties,has radioprotective effects on adult bone marrow HSCs,induces HSC mobilization,and increases HSC proliferation and/or differentiation. Here we examine IL-1 and its possible role in regulating hematopoiesis in the midgestation mouse embryo. We show that IL-1,IL-1 receptors (IL-1Rs),and signaling mediators are expressed in the aorta-gonad-mesonephros (AGM) region during the time when HSCs emerge in this site. IL-1 signaling is functional in the AGM,and the IL-1RI is expressed ventrally in the aortic subregion by some hematopoietic,endothelial,and mesenchymal cells. In vivo analyses of IL-1RI-deficient embryos show an increased myeloid differentiation,concomitant with a slight decrease in AGM HSC activity. Our results suggest that IL-1 is an important homeostatic regulator at the earliest time of HSC development,acting to limit the differentiation of some HSCs along the myeloid lineage.
View Publication
产品类型:
产品号#:
03434
03444
产品名:
MethoCult™GF M3434
MethoCult™GF M3434
文献
Souroullas GP et al. (FEB 2009)
Cell stem cell 4 2 180--6
Adult hematopoietic stem and progenitor cells require either Lyl1 or Scl for survival.
Scl and Lyl1 encode two related basic-helix-loop-helix transcription factors implicated in T cell acute lymphoblastic leukemia. Previous studies showed that Scl is essential for embryonic and adult erythropoiesis,while Lyl1 is important for B cell development. Single-knockout mice have not revealed an essential function for Scl or Lyl1 in adult hematopoietic stem cells (HSCs). To determine if maintenance of HSCs in single-knockout mice is due to functional redundancy,we generated Lyl1;Scl-conditional double-knockout mice. Here,we report a striking genetic interaction between the two genes,with a clear dose dependence for the presence of Scl or Lyl1 alleles for HSC function. Bone marrow repopulation assays and analyses demonstrated rapid loss of hematopoietic progenitors due to apoptosis. The function of HSCs could be rescued by a single allele of Lyl1 but not Scl. These results show that expression of at least one of these factors is essential for maintenance of adult HSC function.
View Publication