Illi B et al. (MAR 2005)
Circulation research 96 5 501--8
Epigenetic histone modification and cardiovascular lineage programming in mouse embryonic stem cells exposed to laminar shear stress.
Experimental evidence indicates that shear stress (SS) exerts a morphogenetic function during cardiac development of mouse and zebrafish embryos. However,the molecular basis for this effect is still elusive. Our previous work described that in adult endothelial cells,SS regulates gene expression by inducing epigenetic modification of histones and activation of transcription complexes bearing acetyltransferase activity. In this study,we evaluated whether SS treatment could epigenetically modify histones and influence cell differentiation in mouse embryonic stem (ES) cells. Cells were exposed to a laminar SS of 10 dyne per cm2/s(-1),or kept in static conditions in the presence or absence of the histone deacetylase inhibitor trichostatin A (TSA). These experiments revealed that SS enhanced lysine acetylation of histone H3 at position 14 (K14),as well as serine phosphorylation at position 10 (S10) and lysine methylation at position 79 (K79),and cooperated with TSA,inducing acetylation of histone H4 and phosphoacetylation of S10 and K14 of histone H3. In addition,ES cells exposed to SS strongly activated transcription from the vascular endothelial growth factor (VEGF) receptor 2 promoter. This effect was paralleled by an early induction of cardiovascular markers,including smooth muscle actin,smooth muscle protein 22-alpha,platelet-endothelial cell adhesion molecule-1,VEGF receptor 2,myocyte enhancer factor-2C (MEF2C),and alpha-sarcomeric actin. In this condition,transcription factors MEF2C and Sma/MAD homolog protein 4 could be isolated from SS-treated ES cells complexed with the cAMP response element-binding protein acetyltransferase. These results provide molecular basis for the SS-dependent cardiovascular commitment of mouse ES cells and suggest that laminar flow may be successfully applied for the in vitro production of cardiovascular precursors.
View Publication
产品类型:
产品号#:
06902
06952
00321
00322
00323
00324
00325
产品名:
文献
Inoue T et al. (JAN 2006)
Stem cells (Dayton,Ohio) 24 1 95--104
Activation of canonical Wnt pathway promotes proliferation of retinal stem cells derived from adult mouse ciliary margin.
Adult retinal stem cells represent a possible cell source for the treatment of retinal degeneration. However,only a small number of stem cells reside in the ciliary margin. The present study aimed to promote the proliferation of adult retinal stem cells via the Wnt signaling pathway. Ciliary margin cells from 8-week-old mice were dissociated and cultured to allow sphere colony formation. Wnt3a,a glycogen synthase kinase (GSK) 3 inhibitor,fibroblast growth factor (FGF) 2,and a FGF receptor inhibitor were then applied in the culture media. The primary spheres were dissociated to prepare either monolayer or secondary sphere cultures. Wnt3a increased the size of the primary spheres and the number of Ki-67-positive proliferating cells in monolayer culture. The Wnt3a-treated primary sphere cells were capable of self-renewal and gave rise to fourfold the number of secondary spheres compared with nontreated sphere cells. These cells also retained their multilineage potential to express several retinal markers under differentiating culture conditions. The Wnt3a-treated cells showed nuclear accumulation of beta-catenin,and a GSK3 inhibitor,SB216763,mimicked the mitogenic activity of Wnt3a. The proliferative effect of SB216763 was attenuated by an FGF receptor inhibitor but was enhanced by FGF2,with Ki-67-positive cells reaching over 70% of the total cells. Wnt3a and SB216763 promoted the proliferation of retinal stem cells,and this was partly dependent on FGF2 signaling. A combination of Wnt and FGF signaling may provide a therapeutic strategy for in vitro expansion or in vivo activation of adult retinal stem cells.
View Publication
产品类型:
产品号#:
72872
产品名:
SB216763
文献
Re A et al. (NOV 2015)
Endocrine
Anacardic acid and thyroid hormone enhance cardiomyocytes production from undifferentiated mouse ES cells along functionally distinct pathways.
The epigenetics of early commitment to embryonal cardiomyocyte is poorly understood. In this work,we compared the effect of thyroid hormone and that of anacardic acid,a naturally occurring histone acetylase inhibitor,or both in combination,on mouse embryonic stem cells (mES) differentiating into embryonal cardiomyocyte by embryoid bodies (EBs) formation. Although the results indicated that anacardic acid (AA) and thyroid hormone were both efficient in promoting cardiomyocyte differentiation,we noticed that a transient exposure of mES to AA alone was sufficient to enlarge the beating areas of EBs compared to those of untreated controls. This effect was associated with changes in the chromatin structure at the promoters of specific cardiomyogenic genes. Among them,a rapid induction of the transcription factor Castor 1 (CASZ1),important for cardiomyocytes differentiation and maturation during embryonic development,was observed in the presence of AA. In contrast,thyroid hormone (T 3) was more effective in stimulating spontaneous firing,thus suggesting a role in the production of a population of cardiomyocyte with pacemaker properties. In conclusion,AA and thyroid hormone both enhanced cardiomyocyte formation along in apparently distinct pathways.
View Publication
产品类型:
产品号#:
产品名:
文献
Eggimann L et al. (MAY 2015)
Bone marrow transplantation 50 5 743--5
Kinetics of peripheral blood chimerism for surveillance of patients with leukemia and chronic myeloid malignancies after reduced-intensity conditioning allogeneic hematopoietic SCT.
Davenport C et al. ( 2016)
Journal of visualized experiments : JoVE 109
A Quick and Efficient Method for the Purification of Endoderm Cells Generated from Human Embryonic Stem Cells.
The differentiation capabilities of pluripotent stem cells such as embryonic stem cells (ESCs) allow a potential therapeutic application for cell replacement therapies. Terminally differentiated cell types could be used for the treatment of various degenerative diseases. In vitro differentiation of these cells towards tissues of the lung,liver and pancreas requires as a first step the generation of definitive endodermal cells. This step is rate-limiting for further differentiation towards terminally matured cell types such as insulin-producing beta cells,hepatocytes or other endoderm-derived cell types. Cells that are committed towards the endoderm lineage highly express a multitude of transcription factors such as FOXA2,SOX17,HNF1B,members of the GATA family,and the surface receptor CXCR4. However,differentiation protocols are rarely 100% efficient. Here,we describe a method for the purification of a CXCR4+ cell population after differentiation into the DE by using magnetic microbeads. This purification additionally removes cells of unwanted lineages. The gentle purification method is quick and reliable and might be used to improve downstream applications and differentiations.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Safi R et al. (FEB 2009)
Molecular endocrinology (Baltimore,Md.) 23 2 188--201
Pharmacological manipulation of the RAR/RXR signaling pathway maintains the repopulating capacity of hematopoietic stem cells in culture.
The retinoid X receptor (RXR) contributes to the regulation of diverse biological pathways via its role as a heterodimeric partner of several nuclear receptors. However,RXR has no established role in the regulation of hematopoietic stem cell (HSC) fate. In this study,we sought to determine whether direct modulation of RXR signaling could impact human HSC self-renewal or differentiation. Treatment of human CD34(+)CD38(-)lin(-) cells with LG1506,a selective RXR modulator,inhibited the differentiation of HSCs in culture and maintained long-term repopulating HSCs in culture that were otherwise lost in response to cytokine treatment. Further studies revealed that LG1506 had a distinct mechanism of action in that it facilitated the recruitment of corepressors to the retinoic acid receptor (RAR)/RXR complex at target gene promoters,suggesting that this molecule was functioning as an inverse agonist in the context of this heterodimer. Interestingly,using combinatorial peptide phage display,we identified unique surfaces presented on RXR when occupied by LG1506 and demonstrated that other modulators that exhibited these properties functioned similarly at both a mechanistic and biological level. These data indicate that the RAR/RXR heterodimer is a critical regulator of human HSC differentiation,and pharmacological modulation of RXR signaling prevents the loss of human HSCs that otherwise occurs in short-term culture.
View Publication
产品类型:
产品号#:
04434
04444
产品名:
MethoCult™H4434经典
MethoCult™H4434经典
文献
Ma ACH et al. (DEC 2010)
Leukemia 24 12 2090--9
A DEAB-sensitive aldehyde dehydrogenase regulates hematopoietic stem and progenitor cells development during primitive hematopoiesis in zebrafish embryos.
Although aldehyde dehydrogenase (ALDH) activity has become a surrogate of hematopoietic stem and progenitor cells (HSPCs),its function during hematopoiesis was unclear. Here,we examined its role in zebrafish hematopoiesis based on pharmacological inhibition and morpholino (MO) knockdown. Zebrafish embryos were treated with diethylaminobenzaldehyde (DEAB,1 μmol/l) between 0- and 48 hour-post-fertilization (hpf). MOs targeting aldhs were injected between 1 and 4-cell stage. The effects on hematopoiesis were evaluated at different stages. DEAB treatment between 0 and 18 hpf increased gene expression associated with HSPC (scl,lmo2),erythropoiesis (gata1,α- and β-eHb) and myelopoiesis (spi1) as well as gfp(+) cells in dissociated Tg(gata1:gfp) embryos. The effects were ameliorated by all-trans retinoic acid (1 nmol/l). Definitive hematopoiesis and the erythromyeloid precursors were unaffected. In all,14 out of 15 zebrafish aldhs were detectable by reverse transcription PCR in 18 hpf embryos,of which only aldh1a2 and aldh16a1 were expressed in sites pertinent to hematopoiesis. Molecular targeting by MOs was demonstrated for 15 aldhs,but none of them,even in combined aldh1a2 and aldh1a3 knockdown,recapitulated the hematopoietic expansion in DEAB-treated embryos. In conclusion,DEAB expands HSPC population during primitive hematopoiesis through inhibition of aldh and retinoic acid synthesis. The specific aldh isoform(s) remains to be determined.
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™工具
ALDEFLUOR™DEAB试剂
文献
Mei Y et al. (SEP 2010)
Nature materials 9 9 768--778
Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells.
Both human embryonic stem cells and induced pluripotent stem cells can self-renew indefinitely in culture; however,present methods to clonally grow them are inefficient and poorly defined for genetic manipulation and therapeutic purposes. Here we develop the first chemically defined,xeno-free,feeder-free synthetic substrates to support robust self-renewal of fully dissociated human embryonic stem and induced pluripotent stem cells. Material properties including wettability,surface topography,surface chemistry and indentation elastic modulus of all polymeric substrates were quantified using high-throughput methods to develop structure-function relationships between material properties and biological performance. These analyses show that optimal human embryonic stem cell substrates are generated from monomers with high acrylate content,have a moderate wettability and employ integrin alpha(v)beta(3) and alpha(v)beta(5) engagement with adsorbed vitronectin to promote colony formation. The structure-function methodology employed herein provides a general framework for the combinatorial development of synthetic substrates for stem cell culture.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Ausubel LJ et al. (JAN 2011)
Methods in molecular biology (Clifton,N.J.) 767 147--159
GMP scale-up and banking of pluripotent stem cells for cellular therapy applications.
Human pluripotent stem cells (PSCs),which include human embryonic stem cells (ESCs) as well as induced pluripotent stem cells (iPSCs),represent an important source of cellular therapies in regenerative medicine and the study of early human development. As such,it is becoming increasingly important to develop methods for the large-scale banking of human PSC lines. There are several well-established methods for the propagation of human PSCs. The key to development of a good manufacturing practice (GMP) bank is to determine a manufacturing method that is amenable to large-scale production using materials that are fully documented. We have developed several banks of hESCs using animal feeder cells,animal-based matrices,or animal-free matrices. Protocols for growing hESCs on mouse embryonic fibroblasts (MEFs) are well established and are very helpful for producing research grade banks of cells. As most human ESCs cultured by research laboratories have been exposed to xenogeneic reagents,it is not imperative that all materials used in the production of a master cell bank be animal-free in origin. Nevertheless,as the field develops,it will no doubt become increasingly important to produce a bank of cells for clinical use without xenogeneic reagents,particularly nonhuman feeder cells which might harbor viruses with potential risk to human health or cell product integrity. Thus,even for cell lines previously exposed to xenogeneic reagents,it is important to minimize any subsequent exposure of the cell lines to additional adventitious agents. We have specifically described procedures for the growth of hESCs on Matrigel,an animal-matrix,and CELLstart,an animal-free matrix,and these can be used to produce hESCs as part of a clinical manufacturing process.
View Publication
Baarine M et al. (NOV 2015)
PLoS ONE 10 11 e0143238
Functional characterization of IPSC-derived brain cells as a model for X-linked adrenoleukodystrophy
X-ALD is an inherited neurodegenerative disorder where mutations in the ABCD1 gene result in clinically diverse phenotypes: the fatal disorder of cerebral childhood ALD (cALD) or a milder disorder of adrenomyeloneuropathy (AMN). The various models used to study the pathobiology of X-ALD disease lack the appropriate presentation for different phenotypes of cALD vs AMN. This study demonstrates that induced pluripotent stem cells (IPSC) derived brain cells astrocytes (Ast),neurons and oligodendrocytes (OLs) express morphological and functional activities of the respective brain cell types. The excessive accumulation of saturated VLCFA,a hallmark" of X-ALD�
View Publication