Petzer AL et al. (JUN 1996)
The Journal of experimental medicine 183 6 2551--8
Differential cytokine effects on primitive (CD34+CD38-) human hematopoietic cells: novel responses to Flt3-ligand and thrombopoietin.
A high proportion of the CD34+CD38- cells in normal human marrow are defined as long-term culture-initiating cells (LTC-IC) because they can proliferate and differentiate when co-cultured with cytokine-producing stromal feeder layers. In contrast,very few CD34+CD38- cells will divide in cytokine-containing methylcellulose and thus are not classifiable as direct colony-forming cells (CFC),although most can proliferate in serum-free liquid cultures containing certain soluble cytokines. Analysis of the effects of 16 cytokines on CD34+CD38- cells in the latter type of culture showed that Flt3-ligand (FL),Steel factor (SF),and interleukin (IL)-3 were both necessary and sufficient to obtain an approximately 30-fold amplification of the input LTC-IC population within 10 d. As single factors,only FL and thrombopoietin (TPO) stimulated a net increase in LTC-IC within 10 d. Interestingly,a significantly increased proportion of the CFC produced from the TPO-amplified LTC-IC were erythroid. Increases in the number of directly detectable CFC of textgreater 500-fold were also obtainable within 10 d in serum-free cultures of CD34+CD38- cells. However,this required the presence of IL-6 and/or granulocyte/colony-stimulating factor and/or nerve growth factor beta in addition to FL,SF,and IL-3. Also,for this response,the most potent single-acting factor tested was IL-3,not FL. Identification of cytokine combinations that differentially stimulate primitive human hematopoietic cell self-renewal and lineage determination should facilitate analysis of the intracellular pathways that regulate these decisions as well as the development of improved ex vivo expansion and gene transfer protocols.
View Publication
Eaves CJ et al. (DEC 1993)
Proceedings of the National Academy of Sciences of the United States of America 90 24 12015--9
Unresponsiveness of primitive chronic myeloid leukemia cells to macrophage inflammatory protein 1 alpha, an inhibitor of primitive normal hematopoietic cells.
Most primitive hematopoietic cells appear to be normally quiescent in vivo,whereas their leukemic counterparts in patients with chronic myeloid leukemia (CML) are maintained in a state of rapid turnover. This difference is also seen in the long-term culture system,where control of primitive hematopoietic progenitor proliferation is mediated by interactions of these cells with marrow-derived mesenchymal cells of the fibroblast lineage. We now show that exogenous addition of macrophage inflammatory protein 1 alpha (MIP-1 alpha) to normal long-term cultures can reversibly and specifically block the activation of primitive" (high proliferative potential)�
View Publication
产品类型:
产品号#:
05150
产品名:
MyeloCult™H5100
文献
York D et al. (DEC 2016)
BMC Biotechnology 16 1 23
Generating aldehyde-tagged antibodies with high titers and high formylglycine yields by supplementing culture media with copper(II)
BACKGROUND The ability to site-specifically conjugate a protein to a payload of interest (e.g.,a fluorophore,small molecule pharmacophore,oligonucleotide,or other protein) has found widespread application in basic research and drug development. For example,antibody-drug conjugates represent a class of biotherapeutics that couple the targeting specificity of an antibody with the chemotherapeutic potency of a small molecule drug. While first generation antibody-drug conjugates (ADCs) used random conjugation approaches,next-generation ADCs are employing site-specific conjugation. A facile way to generate site-specific protein conjugates is via the aldehyde tag technology,where a five amino acid consensus sequence (CXPXR) is genetically encoded into the protein of interest at the desired location. During protein expression,the Cys residue within this consensus sequence can be recognized by ectopically-expressed formylglycine generating enzyme (FGE),which converts the Cys to a formylglycine (fGly) residue. The latter bears an aldehyde functional group that serves as a chemical handle for subsequent conjugation. RESULTS The yield of Cys conversion to fGly during protein production can be variable and is highly dependent on culture conditions. We set out to achieve consistently high yields by modulating culture conditions to maximize FGE activity within the cell. We recently showed that FGE is a copper-dependent oxidase that binds copper in a stoichiometric fashion and uses it to activate oxygen,driving enzymatic turnover. Building upon that work,here we show that by supplementing cell culture media with copper we can routinely reach high yields of highly converted protein. We demonstrate that cells incorporate copper from the media into FGE,which results in increased specific activity of the enzyme. The amount of copper required is compatible with large scale cell culture,as demonstrated in fed-batch cell cultures with antibody titers of 5 g textperiodcentered L(-1),specific cellular production rates of 75 pg textperiodcentered cell(-1) textperiodcentered d(-1),and fGly conversion yields of 95-98 %. CONCLUSIONS We describe a process with a high yield of site-specific formylglycine (fGly) generation during monoclonal antibody production in CHO cells. The conversion of Cys to fGly depends upon the activity of FGE,which can be ensured by supplementing the culture media with 50 uM copper(II) sulfate.
View Publication
产品类型:
产品号#:
03814
产品名:
ClonaCell™tcs介质
文献
Elliott E and Ginzburg I (JAN 2009)
FEBS letters 583 1 229--34
BAG-1 is preferentially expressed in neuronal precursor cells of the adult mouse brain and regulates their proliferation in vitro.
BAG-1 protein has been well characterized as necessary for proper neuronal development. However,little is known about the function of BAG-1 in the adult brain. In this work,the expression and localization of BAG-1 in the mature mouse brain was studied. The levels of both BAG-1 isoforms decrease significantly in the brain during development. BAG-1 was found preferentially expressed in Neuronal Precursor Cells (NPCs) in the two major niches of neurogenesis. Lentiviral mediated overexpression of BAG-1 increased the proliferation rate of cultured NPCs. In addition,depletion of BAG-1 from NPCs induced a decrease in NPCs proliferation in the presence of a stress hormone,corticosterone. These data suggest a role for BAG-1 in mechanisms of neurogenesis in the adult mouse brain.
View Publication
产品类型:
产品号#:
05700
05701
05702
产品名:
NeuroCult™ 基础培养基(小鼠和大鼠)
NeuroCult™ 扩增添加物(小鼠和大鼠)
NeuroCult™扩增试剂盒(小鼠和大鼠)
文献
Ao A et al. (JAN 2012)
PloS one 7 7 e41627
DMH1, a novel BMP small molecule inhibitor, increases cardiomyocyte progenitors and promotes cardiac differentiation in mouse embryonic stem cells.
The possibility of using cell-based therapeutics to treat cardiac failure has generated significant interest since the initial introduction of stem cell-based technologies. However,the methods to quickly and robustly direct stem cell differentiation towards cardiac cell types have been limited by a reliance on recombinant growth factors to provide necessary biological cues. We report here the use of dorsomorphin homologue 1 (DMH1),a second-generation small molecule BMP inhibitor based on dorsomorphin,to efficiently induce beating cardiomyocyte formation in mouse embryonic stem cells (ESCs) and to specifically upregulate canonical transcriptional markers associated with cardiac development. DMH1 differs significantly from its predecessor by its ability to enrich for pro-cardiac progenitor cells that respond to late-stage Wnt inhibition using XAV939 and produce secondary beating cardiomyocytes. Our study demonstrates the utility of small molecules to complement existing in vitro cardiac differentiation protocols and highlights the role of transient BMP inhibition in cardiomyogenesis.
View Publication
产品类型:
产品号#:
73632
73634
产品名:
DMH1
DMH1
文献
Liang Y et al. (AUG 2005)
Blood 106 4 1479--87
Effects of aging on the homing and engraftment of murine hematopoietic stem and progenitor cells.
To test the hypothesis that aging has negative effects on stem-cell homing and engraftment,young or old C57BL/6 bone marrow (BM) cells were injected,using a limiting-dilution,competitive transplantation method,into old or young Ly5 congenic mice. Numbers of hematopoietic stem cells (HSCs) and progenitor cells (HPCs) recovered from BM or spleen were measured and compared with the numbers initially transplanted. Although the frequency of marrow competitive repopulation units (CRUs) increased approximately 2-fold from 2 months to 2 years of age,the BM homing efficiency of old CRUs was approximately 3-fold lower than that of young CRUs. Surprisingly,the overall size of individual stem-cell clones generated in recipients receiving a single CRU was not affected by donor age. However,the increased ages of HSC donors and HSC transplant recipients caused marked skewing of the pattern of engraftment toward the myeloid lineage,indicating that HSC-intrinsic and HSC-extrinsic (microenvironmental) age-related changes favor myelopoiesis. This correlated with changes after transplantation in the rate of recovery of circulating leukocytes,erythrocytes,and platelets. Recovery of the latter was especially blunted in aged recipients. Collectively,these findings may have implications for clinical HSC transplantation in which older persons increasingly serve as donors for elderly patients.
View Publication
产品类型:
产品号#:
03434
03444
产品名:
MethoCult™GF M3434
MethoCult™GF M3434
文献
Brunet de la Grange P et al. (NOV 2006)
Blood 108 9 2998--3004
Low SCL/TAL1 expression reveals its major role in adult hematopoietic myeloid progenitors and stem cells.
Stem cell leukemia/T cell acute leukemia 1 (SCL/TAL1) plays a key role in the development of murine primitive hematopoiesis but its functions in adult definitive hematopoiesis are still unclear. Using lentiviral delivery of TAL1-directed shRNA in human hematopoietic cells,we show that decreased expression of TAL1 induced major disorders at different levels of adult hematopoietic cell development. Erythroid and myeloid cell production in cultures was dramatically decreased in TAL1-directed shRNA-expressing cells,whereas lymphoid B-cell development was normal. These results confirm the role of TAL1 in the erythroid compartment and show TLA1's implication in the function of myeloid committed progenitors. Moreover,long-term cultures and transplantation of TAL1-directed shRNA-expressing CD34+ cells into irradiated nonobese diabetic-severe combined immunodeficient (NOD-SCID) mice led to dramatically low levels of human cells of all lineages including the B-lymphoid lineage,strongly suggesting that TAL1 has a role in the early commitment of hematopoietic stem cells (HSCs) in humans. Cultures and transplantation experiments performed with mouse Sca1+ cells gave identical results. Altogether,these observations definitively show that TAL1 participates in the regulation of hematopoiesis from HSCs to myeloid progenitors,and pinpoint TAL1 as a master protein of human and murine adult hematopoiesis.
View Publication
产品类型:
产品号#:
03434
03444
18756
18756RF
产品名:
MethoCult™GF M3434
MethoCult™GF M3434
EasySep™小鼠SCA1正选试剂盒
RoboSep™ 小鼠SCA1正选试剂盒含滤芯吸头
文献
E. M. Everson et al. (JUL 2018)
The journal of gene medicine 20 8-Jul e3028
Efficacy and safety of a clinically relevant foamy vector design in human hematopoietic repopulating cells.
BACKGROUND Previous studies have shown that foamy viral (FV) vectors are a promising alternative to gammaretroviral and lentiviral vectors and also that insulators can improve FV vector safety. However,in a previous analysis of insulator effects on FV vector safety,strong viral promoters were used to elicit genotoxic events. In the present study,we developed and analyzed the efficacy and safety of a high-titer,clinically relevant FV vector driven by the housekeeping promoter elongation factor-1alpha$ and insulated with an enhancer blocking A1 insulator (FV-EGW-A1). METHODS Human CD34+ cord blood cells were exposed to an enhanced green fluorescent protein expressing vector,FV-EGW-A1,at a multiplicity of infection of 10 and then maintained in vitro or transplanted into immunodeficient mice. Flow cytometry was used to measure engraftment and marking in vivo. FV vector integration sites were analyzed to assess safety. RESULTS FV-EGW-A1 resulted in high-marking,multilineage engraftment of human repopulating cells with no evidence of silencing. Engraftment was highly polyclonal with no clonal dominance and a promising safety profile based on integration site analysis. CONCLUSIONS An FV vector with an elongation factor-1alpha$ promoter and an A1 insulator is a promising vector design for use in the clinic.
View Publication
产品类型:
产品号#:
70008
70008.1
70008.2
70008.3
70008.4
70008.5
200-0000
200-0001
200-0002
产品名:
冻存的人脐带血CD34+细胞
冻存的人脐带血CD34+细胞
冻存的人脐带血CD34+细胞
冻存的人脐带血CD34+细胞
冻存的人脐带血CD34+细胞
冻存的人脐带血CD34+细胞
冻存的人脐带血CD34+细胞
冻存的人脐带血CD34+细胞
冻存的人脐带血CD34+细胞
文献
Liu J et al. (NOV 2015)
Nature Protocols 10 11 1842--59
Efficient delivery of nuclease proteins for genome editing in human stem cells and primary cells.
Targeted nucleases,including zinc-finger nucleases (ZFNs),transcription activator-like (TAL) effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9),have provided researchers with the ability to manipulate nearly any genomic sequence in human cells and model organisms. However,realizing the full potential of these genome-modifying technologies requires their safe and efficient delivery into relevant cell types. Unlike methods that rely on expression from nucleic acids,the direct delivery of nuclease proteins to cells provides rapid action and fast turnover,leading to fewer off-target effects while maintaining high rates of targeted modification. These features make nuclease protein delivery particularly well suited for precision genome engineering. Here we describe procedures for implementing protein-based genome editing in human embryonic stem cells and primary cells. Protocols for the expression,purification and delivery of ZFN proteins,which are intrinsically cell-permeable; TALEN proteins,which can be internalized via conjugation with cell-penetrating peptide moieties; and Cas9 ribonucleoprotein,whose nucleofection into cells facilitates rapid induction of multiplexed modifications,are described,along with procedures for evaluating nuclease protein activity. Once they are constructed,nuclease proteins can be expressed and purified within 6 d,and they can be used to induce genomic modifications in human cells within 2 d.
View Publication
产品类型:
产品号#:
07920
17952
17952RF
19052
19052RF
18000
85850
85857
产品名:
ACCUTASE™
EasySep™人CD4+ T细胞分选试剂盒
RoboSep™ 人CD4+ T细胞分选试剂盒
EasySep™人CD4+ T细胞富集试剂盒
RoboSep™ 人CD4+ T细胞富集试剂盒含滤芯吸头
EasySep™磁极
mTeSR™1
mTeSR™1
文献
L. T. Donlin et al. (JUL 2018)
Arthritis research & therapy 20 1 139
Methods for high-dimensonal analysis of cells dissociated from cyropreserved synovial tissue.
BACKGROUND Detailed molecular analyses of cells from rheumatoid arthritis (RA) synovium hold promise in identifying cellular phenotypes that drive tissue pathology and joint damage. The Accelerating Medicines Partnership RA/SLE Network aims to deconstruct autoimmune pathology by examining cells within target tissues through multiple high-dimensional assays. Robust standardized protocols need to be developed before cellular phenotypes at a single cell level can be effectively compared across patient samples. METHODS Multiple clinical sites collected cryopreserved synovial tissue fragments from arthroplasty and synovial biopsy in a 10{\%} DMSO solution. Mechanical and enzymatic dissociation parameters were optimized for viable cell extraction and surface protein preservation for cell sorting and mass cytometry,as well as for reproducibility in RNA sequencing (RNA-seq). Cryopreserved synovial samples were collectively analyzed at a central processing site by a custom-designed and validated 35-marker mass cytometry panel. In parallel,each sample was flow sorted into fibroblast,T-cell,B-cell,and macrophage suspensions for bulk population RNA-seq and plate-based single-cell CEL-Seq2 RNA-seq. RESULTS Upon dissociation,cryopreserved synovial tissue fragments yielded a high frequency of viable cells,comparable to samples undergoing immediate processing. Optimization of synovial tissue dissociation across six clinical collection sites with {\~{}} 30 arthroplasty and {\~{}} 20 biopsy samples yielded a consensus digestion protocol using 100 mu$g/ml of Liberase™ TL enzyme preparation. This protocol yielded immune and stromal cell lineages with preserved surface markers and minimized variability across replicate RNA-seq transcriptomes. Mass cytometry analysis of cells from cryopreserved synovium distinguished diverse fibroblast phenotypes,distinct populations of memory B cells and antibody-secreting cells,and multiple CD4+ and CD8+ T-cell activation states. Bulk RNA-seq of sorted cell populations demonstrated robust separation of synovial lymphocytes,fibroblasts,and macrophages. Single-cell RNA-seq produced transcriptomes of over 1000 genes/cell,including transcripts encoding characteristic lineage markers identified. CONCLUSIONS We have established a robust protocol to acquire viable cells from cryopreserved synovial tissue with intact transcriptomes and cell surface phenotypes. A centralized pipeline to generate multiple high-dimensional analyses of synovial tissue samples collected across a collaborative network was developed. Integrated analysis of such datasets from large patient cohorts may help define molecular heterogeneity within RA pathology and identify new therapeutic targets and biomarkers.
View Publication