Behar RZ et al. (NOV 2012)
Current protocols in stem cell biology 1 SUPPL.23 Unit 1C.13
Adaptation of stem cells to 96-well plate assays: use of human embryonic and mouse neural stem cells in the MTT assay.
Human embryonic stem cells (hESC) are difficult to adapt to 96-well plate assays,such as the MTT assay,because they survive best when plated as colonies,which are not easily counted and plated accurately. Two methods were developed to address this problem. In the first,ROCK inhibitor (ROCKi) was used,which allows accurate counting and plating of single hESC. In the second,small colonies were plated without ROCKi but with adaptations for accurate counting and plating. The MTT assay was also adapted for use with mouse neural stem cells. These methods allow the MTT assay to be conducted rapidly and accurately with high reproducibility between replicate experiments. When screening volatile chemicals in a 96-well plate,vapor effects may occur and dose ranges must be carefully defined. The methods were validated using the NIH assay guidance tool. These methodss could readily be translated to other 96-well plate assay.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Klim JR et al. (DEC 2010)
Nature methods 7 12 989--94
A defined glycosaminoglycan-binding substratum for human pluripotent stem cells.
To exploit the full potential of human pluripotent stem cells for regenerative medicine,developmental biology and drug discovery,defined culture conditions are needed. Media of known composition that maintain human embryonic stem (hES) cells have been developed,but finding chemically defined,robust substrata has proven difficult. We used an array of self-assembled monolayers to identify peptide surfaces that sustain pluripotent stem cell self-renewal. The effective substrates displayed heparin-binding peptides,which can interact with cell-surface glycosaminoglycans and could be used with a defined medium to culture hES cells for more than 3 months. The resulting cells maintained a normal karyotype and had high levels of pluripotency markers. The peptides supported growth of eight pluripotent cell lines on a variety of scaffolds. Our results indicate that synthetic substrates that recognize cell-surface glycans can facilitate the long-term culture of pluripotent stem cells.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
D. Agudelo et al. (JUN 2017)
Nature methods 14 6 615--620
Marker-free coselection for CRISPR-driven genome editing in human cells.
Targeted genome editing enables the creation of bona fide cellular models for biological research and may be applied to human cell-based therapies. Therefore,broadly applicable and versatile methods for increasing its efficacy in cell populations are highly desirable. We designed a simple and robust coselection strategy for enrichment of cells with either nuclease-driven nonhomologous end joining (NHEJ) or homology-directed repair (HDR) events by harnessing the multiplexing capabilities of CRISPR-Cas9 and Cpf1 systems. Selection for dominant alleles of the ubiquitous sodium/potassium pump (Na+/K+ ATPase) that rendered cells resistant to ouabain was used to enrich for custom genetic modifications at another unlinked locus of interest,thereby effectively increasing the recovery of engineered cells. The process is readily adaptable to transformed and primary cells,including hematopoietic stem and progenitor cells. The use of universal CRISPR reagents and a commercially available small-molecule inhibitor streamlines the incorporation of marker-free genetic changes in human cells.
View Publication
产品类型:
产品号#:
02691
02698
18000
07930
07931
07940
07955
07959
07952
产品名:
StemSpan™CD34+扩增补充(10X)
人类低密度脂蛋白
EasySep™磁极
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
文献
Andrianto et al. ( 2022)
Journal of stem cells & regenerative medicine 18 1 21--26
Isolation and Culture of Non-adherent Cells for Cell Reprogramming.
Coronary heart disease (CHD) is a leading cause of death globally,while its current management is limited to reducing the myocardial infarction area without actually replacing dead cardiomyocytes. Direct cell reprogramming is a method of cellular cardiomyoplasty which aims for myocardial tissue regeneration,and CD34+ cells are one of the potential sources due to their shared embryonic origin with cardiomyocytes. However,the isolation and culture of non-adherent CD34+ cells is crucial to obtain adequate cells for high-efficiency genetic modification. This study aimed to investigate the optimal method for isolation and culture of CD34+ peripheral blood cells using certain culture media. A peripheral blood sample was obtained from a healthy subject and underwent pre-enrichment,isolation,and expansion. The culture was subsequently observed for their viability,adherence,and confluence. Day 0 observation of the culture showed a healthy CD34+ cell with a round cell shape,without any adherent cells present yet. Day 4 of observation showed that CD34+ cells within the blood plasma medium became adherent,indicated by their transformations into spindle or oval morphologies. Meanwhile,CD34+ cells in vitronectin and fibronectin media showed no adherent cells and many of them died. Day 7 observation revealed more adherent CD34+ cells in blood plasma medium,and which had 75% of confluence. In conclusion,the CD34+ cells that were isolated using a combination of density and magnetic methods may be viable and adequately adhere in culture using blood plasma medium,but not in cultures using fibronectin and vitronectin.
View Publication
产品类型:
产品号#:
09605
17856
02691
产品名:
StemSpan™ SFEM II
EasySep™人CD34正选试剂盒 II
StemSpan™CD34+扩增补充(10X)
文献
Tzeng Y-S et al. (JAN 2011)
Blood 117 2 429--39
Loss of Cxcl12/Sdf-1 in adult mice decreases the quiescent state of hematopoietic stem/progenitor cells and alters the pattern of hematopoietic regeneration after myelosuppression.
The C-X-C-type chemokine Cxcl12,also known as stromal cell-derived factor-1,plays a critical role in hematopoiesis during fetal development. However,the functional requirement of Cxcl12 in the adult hematopoietic stem/progenitor cell (HSPC) regulation was still unclear. In this report,we developed a murine Cxcl12 conditional deletion model in which the target gene can be deleted at the adult stage. We found that loss of stroma-secreted Cxcl12 in the adult led to expansion of the HSPC population as well as a reduction in long-term quiescent stem cells. In Cxcl12-deficient bone marrow,HSPCs were absent along the endosteal surface,and blood cell regeneration occurred predominantly in the perisinusoidal space after 5-fluorouracil myelosuppression challenge. Our results indicate that Cxcl12 is required for HSPC homeostasis regulation and is an important factor for osteoblastic niche organization in adult stage bone marrow.
View Publication
产品类型:
产品号#:
03434
03444
产品名:
MethoCult™GF M3434
MethoCult™GF M3434
文献
Sutherland HJ et al. (AUG 1991)
Blood 78 3 666--72
Differential regulation of primitive human hematopoietic cells in long-term cultures maintained on genetically engineered murine stromal cells.
Various growth factors are known to stimulate both early and late stages of human hematopoietic cell development in semisolid assay systems,but their role as microenvironmental regulators is poorly understood. To address this problem,we developed a novel coculture system in which highly purified primitive human hematopoietic cells were seeded onto an irradiated feeder layer of cells from a murine marrow-derived stromal cell line (M2-10B4) previously engineered by retroviral-mediated gene transfer to produce specific human factors. Effects on cells at very early,intermediate,and late stages of hematopoiesis were then evaluated by assessing the number of clonogenic cell precursors (long-term culture initiating cells [LTC-IC]),clonogenic cells,and mature granulocyte and macrophage progeny present in the cultures after 5 weeks. In the absence of any feeders,cells at all stages of hematopoiesis decreased to very low levels. In contrast,maintenance of LTC-IC was found to be supported by control murine stromal cells as effectively as by standard human marrow adherent layers. The presence of granulocyte colony-stimulating factor (G-CSF) and interleukin-3-producing M2-10B4 cells in combination was able to further enhance the maintenance and early differentiation of these cells without a decline in their proliferative potential as measured by the clonogenic output per LTC-IC. However,this effect was lost if granulocyte-macrophage CSF (GM-CSF)-producing feeders were also present. On the other hand,in the presence of GM-CSF-producing feeders,the output of mature granulocytes and macrophages increased 20-fold. These findings show that it is possible to selectively improve the maintenance of very primitive human hematopoietic cells in vitro or their output of mature progeny by appropriate manipulation of the long-term marrow culture system. Further exploitation of this approach should facilitate investigation of the mechanisms operative within the human marrow microenvironment in vivo and the design of protocols for in vitro manipulation of human marrow for future therapeutic applications.
View Publication
Sengupta A et al. (JUN 2011)
Proceedings of the National Academy of Sciences of the United States of America 108 24 9957--62
Atypical protein kinase C (aPKCzeta and aPKClambda) is dispensable for mammalian hematopoietic stem cell activity and blood formation.
The stem-cell pool is considered to be maintained by a balance between symmetric and asymmetric division of stem cells. The cell polarity model proposes that the facultative use of symmetric and asymmetric cell division is orchestrated by a polarity complex consisting of partitioning-defective proteins Par3 and Par6,and atypical protein kinase C (aPKCζ and aPKCλ),which regulates planar symmetry of dividing stem cells with respect to the signaling microenvironment. However,the role of the polarity complex is unexplored in mammalian adult stem-cell functions. Here we report that,in contrast to accepted paradigms,polarization and activity of adult hematopoietic stem cell (HSC) do not depend on either aPKCζ or aPKCλ or both in vivo. Mice,having constitutive and hematopoietic-specific (Vav1-Cre) deletion of aPKCζ and aPKCλ,respectively,have normal hematopoiesis,including normal HSC self-renewal,engraftment,differentiation,and interaction with the bone marrow microenvironment. Furthermore,inducible complete deletion of aPKCλ (Mx1-Cre) in aPKCζ(-/-) HSC does not affect HSC polarization,self-renewal,engraftment,or lineage repopulation. In addition,aPKCζ- and aPKCλ-deficient HSCs elicited a normal pattern of hematopoietic recovery secondary to myeloablative stress. Taken together,the expression of aPKCζ,aPKCλ,or both are dispensable for primitive and adult HSC fate determination in steady-state and stress hematopoiesis,contrary to the hypothesis of a unique,evolutionary conserved aPKCζ/λ-directed cell polarity signaling mechanism in mammalian HSC fate determination.
View Publication
Evi-1 is a transcriptional target of mixed-lineage leukemia oncoproteins in hematopoietic stem cells.
Ecotropic viral integration site-1 (Evi-1) is a nuclear transcription factor that plays an essential role in the regulation of hematopoietic stem cells. Aberrant expression of Evi-1 has been reported in up to 10% of patients with acute myeloid leukemia and is a diagnostic marker that predicts a poor outcome. Although chromosomal rearrangement involving the Evi-1 gene is one of the major causes of Evi-1 activation,overexpression of Evi-1 is detected in a subgroup of acute myeloid leukemia patients without any chromosomal abnormalities,which indicates the presence of other mechanisms for Evi-1 activation. In this study,we found that Evi-1 is frequently up-regulated in bone marrow cells transformed by the mixed-lineage leukemia (MLL) chimeric genes MLL-ENL or MLL-AF9. Analysis of the Evi-1 gene promoter region revealed that MLL-ENL activates transcription of Evi-1. MLL-ENL-mediated up-regulation of Evi-1 occurs exclusively in the undifferentiated hematopoietic population,in which Evi-1 particularly contributes to the propagation of MLL-ENL-immortalized cells. Furthermore,gene-expression analysis of human acute myeloid leukemia cases demonstrated the stem cell-like gene-expression signature of MLL-rearranged leukemia with high levels of Evi-1. Our findings indicate that Evi-1 is one of the targets of MLL oncoproteins and is selectively activated in hematopoietic stem cell-derived MLL leukemic cells.
View Publication
产品类型:
产品号#:
03434
03444
产品名:
MethoCult™GF M3434
MethoCult™GF M3434
文献
Steffen B et al. (APR 2011)
Blood 117 16 4328--37
AML1/ETO induces self-renewal in hematopoietic progenitor cells via the Groucho-related amino-terminal AES protein.
The most frequent translocation t(8;21) in acute myeloid leukemia (AML) generates the chimeric AML1/ETO protein,which blocks differentiation and induces self-renewal in hematopoietic progenitor cells. The underlying mechanisms mediating AML1/ETO-induced self-renewal are largely unknown. Using expression microarray analysis,we identified the Groucho-related amino-terminal enhancer of split (AES) as a consistently up-regulated AML1/ETO target. Elevated levels of AES mRNA and protein were confirmed in AML1/ETO-expressing leukemia cells,as well as in other AML specimens. High expression of AES mRNA or protein was associated with improved survival of AML patients,even in the absence of t(8;21). On a functional level,knockdown of AES by RNAi in AML1/ETO-expressing cell lines inhibited colony formation. Similarly,self-renewal induced by AML1/ETO in primary murine progenitors was inhibited when AES was decreased or absent. High levels of AES expression enhanced formation of immature colonies,serial replating capacity of primary cells,and colony formation in colony-forming unit-spleen assays. These findings establish AES as a novel AML1/ETO-induced target gene that plays an important role in the self-renewal phenotype of t(8;21)-positive AML.
View Publication
产品类型:
产品号#:
03234
产品名:
MethoCult™M3234
文献
Meng A et al. (SEP 2003)
Cancer research 63 17 5414--9
Ionizing radiation and busulfan induce premature senescence in murine bone marrow hematopoietic cells.
Exposure of murine bone marrow (BM) cells to ionizing radiation (IR; 4 Gy) resulted in textgreater95% inhibition of the frequency of various day types of cobblestone area-forming cells in association with the induction of apoptosis in hematopoietic stem cell alike cells (Lin(-) ScaI(+) c-kit(+) cells; IR: 64.8 +/- 0.4% versus control: 20.4 +/- 0.5%; P textless 0.001) and progenitors (Lin(-) ScaI(-) c-kit(+) cells; IR: 46.2 +/- 1.4% versus control: 7.8 +/- 0.5%; P textless 0.001). Incubation of murine BM cells with busulfan (BU; 30 micro M) for 6 h also inhibited the cobblestone area-forming cell frequency but failed to cause a significant increase in apoptosis in these two types of hematopoietic cells. After 5 weeks of long-term BM cell culture,33% and 72% of hematopoietic cells survived IR- and BU-induced damage,respectively,as compared with control cells,but they could not form colony forming units-granulocyte macrophages. Moreover,these surviving cells expressed an increased level of senescence-associated beta-galactosidase,p16(Ink4a),and p19(Arf). These findings suggest that IR inhibits the function of hematopoietic stem cell alike cells and progenitors primarily by inducing apoptosis,whereas BU does so mainly by inducing premature senescence. In addition,induction of premature senescence in BM hematopoietic cells also contributes to IR-induced inhibition of their hematopoietic function. Interestingly,the induction of hematopoietic cell senescence by IR,but not by BU,was associated with an elevation in p53 and p21(Cip1/Waf1) expression. This suggests that IR induces hematopoietic cell senescence in a p53-p21(Cip1/Waf1)-dependent manner,whereas the induction of senescence by BU bypasses the p53-p21(Cip1/Waf1) pathway.
View Publication