Thordardottir S et al. (MAY 2014)
Stem cells and development 23 9 955--67
The aryl hydrocarbon receptor antagonist StemRegenin 1 promotes human plasmacytoid and myeloid dendritic cell development from CD34+ hematopoietic progenitor cells.
The superiority of dendritic cells (DCs) as antigen-presenting cells has been exploited in numerous clinical trials,where generally monocyte-derived DCs (Mo-DCs) are injected to induce immunity in patients with cancer or infectious diseases. Despite promising expansion of antigen-specific T cells,the clinical responses following vaccination have been limited,indicating that further improvements of DC vaccine potency are necessary. Pre-clinical studies suggest that vaccination with combination of primary DC subsets,such as myeloid and plasmacytoid blood DCs (mDCs and pDCs,respectively),may result in stronger clinical responses. However,it is a challenge to obtain high enough numbers of primary DCs for immunotherapy,since their frequency in blood is very low. We therefore explored the possibility to generate them from hematopoietic progenitor cells (HPCs). Here,we show that by inhibiting the aryl hydrocarbon receptor with its antagonist StemRegenin 1 (SR1),clinical-scale numbers of functional BDCA2(+)BDCA4(+) pDCs,BDCA1(+) mDCs,and BDCA3(+)DNGR1(+) mDCs can be efficiently generated from human CD34(+) HPCs. The ex vivo-generated DCs were phenotypically and functionally comparable to peripheral blood DCs. They secreted high levels of pro-inflammatory cytokines such as interferon (IFN)-α,interleukin (IL)-12,and tumor necrosis factor (TNF)-α and upregulated co-stimulatory molecules and maturation markers following stimulation with Toll-like receptor (TLR) ligands. Further,they induced potent allogeneic T-cell responses and activated antigen-experienced T cells. These findings demonstrate that SR1 can be exploited to generate high numbers of functional pDCs and mDCs from CD34(+) HPCs,providing an alternative option to Mo-DCs for immunotherapy of patients with cancer or infections.
View Publication
产品类型:
产品号#:
72342
72344
72352
72354
产品名:
StemRegenin 1
StemRegenin 1
StemRegenin 1(盐酸盐)
StemRegenin 1(盐酸盐)
文献
Li Z et al. (JAN 2009)
PLoS ONE 4 12 e8443
Functional and transcriptional characterization of human embryonic stem cell-derived endothelial cells for treatment of myocardial infarction
BACKGROUND: Differentiation of human embryonic stem cells into endothelial cells (hESC-ECs) has the potential to provide an unlimited source of cells for novel transplantation therapies of ischemic diseases by supporting angiogenesis and vasculogenesis. However,the endothelial differentiation efficiency of the conventional embryoid body (EB) method is low while the 2-dimensional method of co-culturing with mouse embryonic fibroblasts (MEFs) require animal product,both of which can limit the future clinical application of hESC-ECs. Moreover,to fully understand the beneficial effects of stem cell therapy,investigators must be able to track the functional biology and physiology of transplanted cells in living subjects over time. METHODOLOGY: In this study,we developed an extracellular matrix (ECM) culture system for increasing endothelial differentiation and free from contaminating animal cells. We investigated the transcriptional changes that occur during endothelial differentiation of hESCs using whole genome microarray,and compared to human umbilical vein endothelial cells (HUVECs). We also showed functional vascular formation by hESC-ECs in a mouse dorsal window model. Moreover,our study is the first so far to transplant hESC-ECs in a myocardial infarction model and monitor cell fate using molecular imaging methods. CONCLUSION: Taken together,we report a more efficient method for derivation of hESC-ECs that express appropriate patterns of endothelial genes,form functional vessels in vivo,and improve cardiac function. These studies suggest that hESC-ECs may provide a novel therapy for ischemic heart disease in the future.
View Publication
产品类型:
产品号#:
09500
85850
85857
产品名:
BIT 9500血清替代物
mTeSR™1
mTeSR™1
文献
Nagano M et al. (AUG 2010)
Stem cells and development 19 8 1195--210
Hypoxia responsive mesenchymal stem cells derived from human umbilical cord blood are effective for bone repair.
Mesenchymal stem cells (MSCs) are highly useful in a variety of cell therapies owing to their multipotential differentiation capability. MSCs derived from umbilical cord blood are generally isolated by their plastic adherence without using specific cell surface markers and examined for their osteogenic,adipogenic,and chondrogenic differentiation properties retrospectively. Here,we report 2 subpopulations of MSCs,separated based on aldehyde dehydrogenase (ALDH) activity. MSCs with a high ALDH activity (Alde-High) proliferated more than those with a low ALDH activity (Alde-Low). Alde-High MSCs had a greater ability to differentiate than Alde-Low MSCs in in vitro culture. Transplantation of Alde-High MSCs into fractured mouse femurs enabled early repair of tissues and rapid bone substitution. Alde-High MSCs were also more responsive to hypoxia than Alde-Low MSCs,with the upregulation of Flt-1,CXCR4,and Angiopoietin-2. Thus,MSCs with a high ALDH activity might serve as an effective therapeutic tool for healing fractures within a short period of time.
View Publication
产品类型:
产品号#:
01700
01705
01701
01702
产品名:
ALDEFLUOR™工具
ALDEFLUOR™DEAB试剂
ALDEFLUOR™测定缓冲液
文献
Kamei K-i et al. (MAY 2010)
Lab on a chip 10 9 1113--9
Microfluidic image cytometry for quantitative single-cell profiling of human pluripotent stem cells in chemically defined conditions.
Microfluidic image cytometry (MIC) has been developed to study phenotypes of various hPSC lines by screening several chemically defined serum/feeder-free conditions. A chemically defined hPSC culture was established using 20 ng mL(-1) of bFGF on 20 microg mL(-1) of Matrigel to grow hPSCs over a week in an undifferentiated state. Following hPSC culture,we conducted quantitative MIC to perform a single cell profiling of simultaneously detected protein expression (OCT4 and SSEA1). Using clustering analysis,we were able to systematically compare the characteristics of various hPSC lines in different conditions.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Perry BC et al. (JUN 2008)
Tissue engineering. Part C,Methods 14 2 149--56
Collection, cryopreservation, and characterization of human dental pulp-derived mesenchymal stem cells for banking and clinical use.
Recent studies have shown that mesenchymal stem cells (MSC) with the potential for cell-mediated therapies and tissue engineering applications can be isolated from extracted dental tissues. Here,we investigated the collection,processing,and cryobiological characteristics of MSC from human teeth processed under current good tissue practices (cGTP). Viable dental pulp-derived MSC (DPSC) cultures were isolated from 31 of 40 teeth examined. Of eight DPSC cultures examined more thoroughly,all expressed appropriate cell surface markers and underwent osteogenic,adipogenic,and chondrogenic differentiation in appropriate differentiation medium,thus meeting criteria to be called MSC. Viable DPSC were obtained up to 120 h postextraction. Efficient recovery of DPSC from cryopreserved intact teeth and second-passage DPSC cultures was achieved. These studies indicate that DPSC isolation is feasible for at least 5 days after tooth extraction,and imply that processing immediately after extraction may not be required for successful banking of DPSC. Further,the recovery of viable DPSC after cryopreservation of intact teeth suggests that minimal processing may be needed for the banking of samples with no immediate plans for expansion and use. These initial studies will facilitate the development of future cGTP protocols for the clinical banking of MSC.
View Publication
A Cas9 Ribonucleoprotein Platform for Functional Genetic Studies of HIV-Host Interactions in Primary Human T Cells.
New genetic tools are needed to understand the functional interactions between HIV and human host factors in primary cells. We recently developed a method to edit the genome of primary CD4(+) T cells by electroporation of CRISPR/Cas9 ribonucleoproteins (RNPs). Here,we adapted this methodology to a high-throughput platform for the efficient,arrayed editing of candidate host factors. CXCR4 or CCR5 knockout cells generated with this method are resistant to HIV infection in a tropism-dependent manner,whereas knockout of LEDGF or TNPO3 results in a tropism-independent reduction in infection. CRISPR/Cas9 RNPs can furthermore edit multiple genes simultaneously,enabling studies of interactions among multiple host and viral factors. Finally,in an arrayed screen of 45 genes associated with HIV integrase,we identified several candidate dependency/restriction factors,demonstrating the power of this approach as a discovery platform. This technology should accelerate target validation for pharmaceutical and cell-based therapies to cure HIV infection.
View Publication
产品类型:
产品号#:
19052
19052RF
产品名:
EasySep™人CD4+ T细胞富集试剂盒
RoboSep™ 人CD4+ T细胞富集试剂盒含滤芯吸头
文献
Haraguchi Y et al. (DEC 2015)
Journal of Tissue Engineering and Regenerative Medicine 9 12 1363--1375
Simple suspension culture system of human iPS cells maintaining their pluripotency for cardiac cell sheet engineering.
In this study,a simple three-dimensional (3D) suspension culture method for the expansion and cardiac differentiation of human induced pluripotent stem cells (hiPSCs) is reported. The culture methods were easily adapted from two-dimensional (2D) to 3D culture without any additional manipulations. When hiPSCs were directly applied to 3D culture from 2D in a single-cell suspension,only a few aggregated cells were observed. However,after 3 days,culture of the small hiPSC aggregates in a spinner flask at the optimal agitation rate created aggregates which were capable of cell passages from the single-cell suspension. Cell numbers increased to approximately 10-fold after 12 days of culture. The undifferentiated state of expanded hiPSCs was confirmed by flow cytometry,immunocytochemistry and quantitative RT-PCR,and the hiPSCs differentiated into three germ layers. When the hiPSCs were subsequently cultured in a flask using cardiac differentiation medium,expression of cardiac cell-specific genes and beating cardiomyocytes were observed. Furthermore,the culture of hiPSCs on Matrigel-coated dishes with serum-free medium containing activin A,BMP4 and FGF-2 enabled it to generate robust spontaneous beating cardiomyocytes and these cells expressed several cardiac cell-related genes,including HCN4,MLC-2a and MLC-2v. This suggests that the expanded hiPSCs might maintain the potential to differentiate into several types of cardiomyocytes,including pacemakers. Moreover,when cardiac cell sheets were fabricated using differentiated cardiomyocytes,they beat spontaneously and synchronously,indicating electrically communicative tissue. This simple culture system might enable the generation of sufficient amounts of beating cardiomyocytes for use in cardiac regenerative medicine and tissue engineering.
View Publication
Weng Z et al. (JUL 2014)
Stem cells and development 23 14 1704--1716
A simple, cost-effective but highly efficient system for deriving ventricular cardiomyocytes from human pluripotent stem cells.
Self-renewable human pluripotent stem cells (hPSCs) serve as a potential unlimited ex vivo source of human cardiomyocytes (CMs) for cell-based disease modeling and therapies. Although recent advances in directed differentiation protocols have enabled more efficient derivation of hPSC-derived CMs with an efficiency of ∼50%-80% CMs and a final yield of ∼1-20 CMs per starting undifferentiated hPSC,these protocols are often not readily transferrable across lines without first optimizing multiple parameters. Further,the resultant populations are undefined for chamber specificity or heterogeneous containing mixtures of atrial,ventricular (V),and pacemaker derivatives. Here we report a highly cost-effective and reproducibly efficient system for deriving hPSC-ventricular cardiomyocytes (VCMs) from all five human embryonic stem cell (HES2,H7,and H9) and human induced PSC (hiPSC) (reprogrammed from human adult peripheral blood CD34(+) cells using nonintegrating episomal vectors) lines tested. Cardiogenic embryoid bodies could be formed by the sequential addition of BMP4,Rho kinase inhibitor,activin-A,and IWR-1. Spontaneously contracting clusters appeared as early as day 8. At day 16,up to 95% of cells were cTnT(+). Of which,93%,94%,100%,92%,and 92% of cardiac derivatives from HES2,H7,H9,and two iPSC lines,respectively,were VCMs as gauged by signature ventricular action potential and ionic currents (INa(+)/ICa,L(+)/IKr(+)/IKATP(+)); Ca(2+) transients showed positive chronotropic responses to $\$-adrenergic stimulation. Our simple,cost-effective protocol required the least amounts of reagents and time compared with others. While the purity and percentage of PSC-VCMs were comparable to a recently published protocol,the present yield and efficiency with a final output of up to 70 hPSC-VCMs per hPSC was up to 5-fold higher and without the need of performing line-specific optimization. These differences were discussed. The results may lead to mass production of hPSC-VCMs in bioreactors.
View Publication
产品类型:
产品号#:
02690
07913
85850
85857
产品名:
StemSpan™CC100
Dispase(5 U/mL)
mTeSR™1
mTeSR™1
文献
Huang X et al. (JAN 2016)
Leukemia 30 1 144--53
Activation of OCT4 enhances ex vivo expansion of human cord blood hematopoietic stem and progenitor cells by regulating HOXB4 expression.
Although hematopoietic stem cells (HSC) are the best characterized and the most clinically used adult stem cells,efforts are still needed to understand how to best ex vivo expand these cells. Here we present our unexpected finding that OCT4 is involved in the enhancement of cytokine-induced expansion capabilities of human cord blood (CB) HSC. Activation of OCT4 by Oct4-activating compound 1 (OAC1) in CB CD34(+) cells enhanced ex vivo expansion of HSC,as determined by a rigorously defined set of markers for human HSC,and in vivo short-term and long-term repopulating ability in NSG mice. Limiting dilution analysis revealed that OAC1 treatment resulted in 3.5-fold increase in the number of SCID repopulating cells (SRCs) compared with that in day 0 uncultured CD34(+) cells and 6.3-fold increase compared with that in cells treated with control vehicle. Hematopoietic progenitor cells,as assessed by in vitro colony formation,were also enhanced. Furthermore,we showed that OAC1 treatment led to OCT4-mediated upregulation of HOXB4. Consistently,siRNA-mediated knockdown of HOXB4 expression suppressed effects of OAC1 on ex vivo expansion of HSC. Our study has identified the OCT4-HOXB4 axis in ex vivo expansion of human CB HSC.
View Publication
产品类型:
产品号#:
72292
72602
产品名:
丙戊酸(钠盐)
OAC1
文献
Y. S. Park et al. (mar 2022)
Biochemistry and biophysics reports 29 101214
Enhancement of proliferation of human umbilical cord blood-derived CD34+ hematopoietic stem cells by a combination of hyper-interleukin-6 and small molecules.
Umbilical cord blood (UCB) is an alternative source of allogeneic hematopoietic stem cells (HSCs) for transplantation to treat various hematological disorders. The major limitation to the use of UCB-derived HSCs (UCB-HSCs) in transplantation,however,is the low numbers of HSCs in a unit of cord blood. To overcome this limitation,various cytokines or small molecules have been used to expand UCB-HSCs ex vivo. In this study,we investigated a synergistic effect of the combination of HIL-6,SR1,and UM171 on UCB-HSC culture and found that this combination resulted in the highest number of CD34+ cells. These results suggest that the combination of SR1,UM171 and HIL-6 exerts a synergistic effect in the proliferation of HSCs from UCB and thus,SR1,UM171 and HIL-6 is the most suitable combination for obtaining HSCs from UCB for clinical transplantation.
View Publication
产品类型:
产品号#:
09600
60018
17856
产品名:
StemSpan™ SFEM
抗人CD45抗体,克隆HI30
EasySep™人CD34正选试剂盒 II
文献
Gori JL et al. (SEP 2012)
Blood 120 13 e35--44
Efficient generation, purification, and expansion of CD34(+) hematopoietic progenitor cells from nonhuman primate-induced pluripotent stem cells.
Induced pluripotent stem cell (iPSC) therapeutics are a promising treatment for genetic and infectious diseases. To assess engraftment,risk of neoplastic formation,and therapeutic benefit in an autologous setting,testing iPSC therapeutics in an appropriate model,such as the pigtail macaque (Macaca nemestrina; Mn),is crucial. Here,we developed a chemically defined,scalable,and reproducible specification protocol with bone morphogenetic protein 4,prostaglandin-E2 (PGE2),and StemRegenin 1 (SR1) for hematopoietic differentiation of Mn iPSCs. Sequential coculture with bone morphogenetic protein 4,PGE2,and SR1 led to robust Mn iPSC hematopoietic progenitor cell formation. The combination of PGE2 and SR1 increased CD34(+)CD38(-)Thy1(+)CD45RA(-)CD49f(+) cell yield by 6-fold. CD34(+)CD38(-)Thy1(+)CD45RA(-)CD49f(+) cells isolated on the basis of CD34 expression and cultured in SR1 expanded 3-fold and maintained this long-term repopulating HSC phenotype. Purified CD34(high) cells exhibited 4-fold greater hematopoietic colony-forming potential compared with unsorted hematopoietic progenitors and had bilineage differentiation potential. On the basis of these studies,we calculated the cell yields that must be achieved at each stage to meet a threshold CD34(+) cell dose that is required for engraftment in the pigtail macaque. Our protocol will support scale-up and testing of iPSC-derived CD34(high) cell therapies in a clinically relevant nonhuman primate model.
View Publication
产品类型:
产品号#:
72192
72194
72342
72344
72352
72354
产品名:
前列腺素E2(Prostaglandin E2)
前列腺素E2(Prostaglandin E2)
StemRegenin 1
StemRegenin 1
StemRegenin 1(盐酸盐)
StemRegenin 1(盐酸盐)
文献
Ng PP et al. (OCT 2006)
Blood 108 8 2745--54
Molecular events contributing to cell death in malignant human hematopoietic cells elicited by an IgG3-avidin fusion protein targeting the transferrin receptor.
We have previously reported that an anti-human transferrin receptor IgG3-avidin fusion protein (anti-hTfR IgG3-Av) inhibits the proliferation of an erythroleukemia-cell line. We have now found that anti-hTfR IgG3-Av also inhibits the proliferation of additional human malignant B and plasma cells. Anti-hTfR IgG3-Av induces internalization and rapid degradation of the TfR. These events can be reproduced in cells treated with anti-hTfR IgG3 cross-linked with a secondary Ab,suggesting that they result from increased TfR cross-linking. Confocal microscopy of cells treated with anti-hTfR IgG3-Av shows that the TfR is directed to an intracellular compartment expressing the lysosomal marker LAMP-1. The degradation of TfR is partially blocked by cysteine protease inhibitors. Furthermore,cells treated with anti-hTfR IgG3-Av exhibit mitochondrial depolarization and activation of caspases 9,8,and 3. The mitochondrial damage and cell death can be prevented by iron supplementation,but cannot be fully blocked by a pan-caspase inhibitor. These results suggest that anti-hTfR IgG3-Av induces lethal iron deprivation,but the resulting cell death does not solely depend on caspase activation. This report provides insights into the mechanism of cell death induced by anti-TfR Abs such as anti-hTfR IgG3-Av,a molecule that may be useful in the treatment of B-cell malignancies such as multiple myeloma.
View Publication