S. Badrinath et al. (jun 2022)
Nature 606 7916 992--998
A vaccine targeting resistant tumours by dual T cell plus NK cell attack.
Most cancer vaccines target peptide antigens,necessitating personalization owing to the vast inter-individual diversity in major histocompatibility complex (MHC) molecules that present peptides to T cells. Furthermore,tumours frequently escape T cell-mediated immunity through mechanisms that interfere with peptide presentation1. Here we report a cancer vaccine that induces a coordinated attack by diverse T cell and natural killer (NK) cell populations. The vaccine targets the MICA and MICB (MICA/B) stress proteins expressed by many human cancers as a result of DNA damage2. MICA/B serve as ligands for the activating NKG2D receptor on T cells and NK cells,but tumours evade immune recognition by proteolytic MICA/B cleavage3,4. Vaccine-induced antibodies increase the density of MICA/B proteins on the surface of tumour cells by inhibiting proteolytic shedding,enhance presentation of tumour antigens by dendritic cells to T cells and augment the cytotoxic function of NK cells. Notably,this vaccine maintains efficacy against MHC class I-deficient tumours resistant to cytotoxic T cells through the coordinated action of NK cells and CD4+ T cells. The vaccine is also efficacious in a clinically important setting: immunization following surgical removal of primary,highly metastatic tumours inhibits the later outgrowth of metastases. This vaccine design enables protective immunity even against tumours with common escape mutations.
View Publication
产品类型:
产品号#:
19853
19855
产品名:
EasySep™小鼠CD8+ T细胞分选试剂盒
EasySep™小鼠NK细胞分选试剂盒
文献
Hoeflich KP et al. ( 2012)
Cancer research 72 1 210--219
Intermittent administration of MEK inhibitor GDC-0973 plus PI3K inhibitor GDC-0941 triggers robust apoptosis and tumor growth inhibition.
Combinations of MAP/ERK kinase (MEK) and phosphoinositide 3-kinase (PI3K) inhibitors have shown promise in preclinical cancer models,leading to the initiation of clinical trials cotargeting these two key cancer signaling pathways. GDC-0973,a novel selective MEK inhibitor,and GDC-0941,a class I PI3K inhibitor,are in early stage clinical trials as both single agents and in combination. The discovery of these selective inhibitors has allowed investigation into the precise effects of combining inhibitors of two major signaling branches downstream of RAS. Here,we investigated multiple biomarkers in the mitogen-activated protein kinase (MAPK) and PI3K pathway to search for points of convergence that explain the increased apoptosis seen in combination. Using washout studies in vitro and alternate dosing schedules in mice,we showed that intermittent inhibition of the PI3K and MAPK pathway is sufficient for efficacy in BRAF and KRAS mutant cancer cells. The combination of GDC-0973 with the PI3K inhibitor GDC-0941 resulted in combination efficacy in vitro and in vivo via induction of biomarkers associated with apoptosis,including Bcl-2 family proapoptotic regulators. Therefore,these data suggest that continuous exposure of MEK and PI3K inhibitors in combination is not required for efficacy in preclinical cancer models and that sustained effects on downstream apoptosis biomarkers can be observed in response to intermittent dosing.
View Publication
产品类型:
产品号#:
73152
产品名:
GDC- 0941
文献
Gerson SL et al. (SEP 1996)
Blood 88 5 1649--55
Human CD34+ hematopoietic progenitors have low, cytokine-unresponsive O6-alkylguanine-DNA alkyltransferase and are sensitive to O6-benzylguanine plus BCNU.
Human bone marrow (BM) cells contain low levels of the DNA repair protein,O6-alkylguanine-DNA alkyltransferase,which may explain their susceptibility to nitrosourea-induced cytotoxicity and the development of secondary leukemia after nitrosourea treatment. Isolated CD34+ myeloid progenitors were also found to have low levels of alkyltransferase activity. The level of alkyltransferase in CD34+ cells or in mononuclear BM cells did not increase after incubation with granulocyte-macrophage colony-stimulating factor,interleukin-3,stem cell factor,the combination,or 5637 conditioned medium. BCNU sensitivity remained unchanged as well. In addition,O6-benzylguanine depleted alkyltransferase activity in BM cells at concentrations as low as 1.5 mumol/L after a 1-hour exposure. O6-benzylguanine pretreatment markedly sensitized hematopoietic progenitor colony-forming cells to BCNU,resulting in a reduction in the dose of drug (termed the dose-modification factor) required to inhibit 50% of the colony formation (IC50) of threefold to fivefold. Since,unlike many other cell types,proliferating early (CD34+) hematopoietic precursors do not induce alkyltransferase,myelosuppression may be the dose-limiting toxicity of the combination of O6-benzylguanine plus BCNU in clinical trials.
View Publication
Galera-Monge T et al. (MAY 2016)
Stem Cell Research 16 3 673--676
Generation of a human iPSC line from a patient with an optic atrophy ‘plus' phenotype due to a mutation in the OPA1 gene
Human iPSC line Oex2054SV.4 was generated from fibroblasts of a patient with an optic atrophy 'plus' phenotype associated with a heterozygous mutation in the OPA1 gene. Reprogramming factors OCT3/4,SOX2,CMYC and KLF4 were delivered using a non-integrative methodology that involves the use of Sendai virus.
View Publication