Akatsuka A et al. (SEP 2010)
International immunology 22 9 783--90
Tumor cells of non-hematopoietic and hematopoietic origins express activation-induced C-type lectin, the ligand for killer cell lectin-like receptor F1.
Killer cell lectin-like receptor F1 (KLRF1) is an activating C-type lectin-like receptor expressed on human NK cells and subsets of T cells. In this study,we show that activation-induced C-type lectin (AICL) is a unique KLRF1 ligand expressed on tumor cell lines of hematopoietic and non-hematopoietic origins. We screened a panel of human tumor cell lines using the KLRF1 reporter cells and found that several tumor lines expressed KLRF1 ligands. We characterized a putative KLRF1 ligand expressed on the U937 cell line. The molecular mass for the deglycosylated ligand was 28 kDa under non-reducing condition and 17 kDa under reducing condition,suggesting that the KLRF1 ligand is a homodimer. By expression cloning from a U937 cDNA library,we identified AICL as a KLRF1 ligand. We generated mAbs against AICL to identify the KLRF1 ligands on non-hematopoietic tumor lines. The anti-AICL mAbs stained the tumor lines that express the KLRF1 ligands and importantly the interaction of KLRF1 with the KLRF1 ligand on non-hematopoietic tumors was completely blocked by the two anti-AICL mAbs. Moreover,NK cell degranulation triggered by AICL-expressing targets was partially inhibited by the anti-AICL mAb. Finally,we demonstrate that AICL is expressed in human primary liver cancers. These results suggest that AICL is expressed on tumor cells of non-hematopoietic origins and raise the possibility that AICL may contribute to NK cell surveillance of tumor cells.
View Publication
产品类型:
产品号#:
产品名:
文献
Hess DA et al. (MAR 2006)
Blood 107 5 2162--9
Selection based on CD133 and high aldehyde dehydrogenase activity isolates long-term reconstituting human hematopoietic stem cells.
The development of novel cell-based therapies requires understanding of distinct human hematopoietic stem and progenitor cell populations. We recently isolated reconstituting hematopoietic stem cells (HSCs) by lineage depletion and purification based on high aldehyde dehydrogenase activity (ALDH(hi)Lin- cells). Here,we further dissected the ALDH(hi)-Lin- population by selection for CD133,a surface molecule expressed on progenitors from hematopoietic,endothelial,and neural lineages. ALDH(hi)CD133+Lin- cells were primarily CD34+,but also included CD34-CD38-CD133+ cells,a phenotype previously associated with repopulating function. Both ALDH(hi)CD133-Lin- and ALDH(hi)CD133+Lin- cells demonstrated distinct clonogenic progenitor function in vitro,whereas only the ALDH(hi)CD133+Lin- population seeded the murine bone marrow 48 hours after transplantation. Significant human cell repopulation was observed only in NOD/SCID and NOD/SCID beta2M-null mice that received transplants of ALDH(hi)CD133+Lin- cells. Limiting dilution analysis demonstrated a 10-fold increase in the frequency of NOD/SCID repopulating cells compared with CD133+Lin- cells,suggesting that high ALDH activity further purified cells with repopulating function. Transplanted ALDH(hi)CD133+Lin- cells also maintained primitive hematopoietic phenotypes (CD34+CD38-) and demonstrated enhanced repopulating function in recipients of serial,secondary transplants. Cell selection based on ALDH activity and CD133 expression provides a novel purification of HSCs with long-term repopulating function and may be considered an alternative to CD34 cell selection for stem cell therapies.
View Publication
Expansion of hematopoietic progenitor cell populations in stirred suspension bioreactors of normal human bone marrow cells.
We have investigated the potential of stirred suspension cultures to support hematopoiesis from starting innocula of normal human bone marrow cells. Initial studies showed that the short-term maintenance of both colony-forming cell (CFC) numbers and their precursors,detected as long-term culture-initiating cells (LTC-IC),could be achieved as well in stirred suspension cultures as in static cultures. Neither of these progenitor cell populations was affected in either type of culture when porous microcarriers were added to provide an increased surface for adherent cell attachment. Supplementation of the medium with 10 ng/ml of Steel factor (SF) and 2 ng/ml of interleukin-3 (IL-3) resulted in a significant expansion of LTC-IC,CFC and total cell numbers in stirred cultures. Both the duration and ultimate magnitude of these expansions were correlated with the initial cell density and after 4 weeks the number of LTC-IC and CFC present in stirred cultures initiated with the highest starting cell concentration tested reflected average increases of 7- and 22-fold,respectively,above input values. Stirred suspension cultures offer the combined advantages of homogeneity and lack of dependence on the formation and maintenance of an adherent cell layer. Our results suggest their applicability to the development of scaled-up bioreactor systems for clinical procedures requiring the production of primitive hematopoietic cell populations. In addition,stirred suspension cultures may offer a new tool for the analysis of hematopoietic regulatory mechanisms.
View Publication
产品类型:
产品号#:
05150
产品名:
MyeloCult™H5100
文献
Mateizel I et al. (OCT 2009)
Human reproduction (Oxford,England) 24 10 2477--89
Characterization of CD30 expression in human embryonic stem cell lines cultured in serum-free media and passaged mechanically
BACKGROUND: The presence of chromosomal abnormalities could have a negative impact for human embryonic stem cell (hESC) applications both in regenerative medicine and in research. A biomarker that allows the identification of chromosomal abnormalities induced in hESC in culture before they take over the culture would represent an important tool for defining optimal culture conditions for hESC. Here we investigate the expression of CD30,reported to be a biomarker of hESCs with abnormal karyotype,in undifferentiated and spontaneously differentiated hESC.backslashnbackslashnMETHODS AND RESULTS: hESC were derived and cultured on mouse fibroblasts in KO-SR containing medium (serum free media) and passaged mechanically. Our results based on analysis at mRNA (RT-PCR) and protein (fluorescence-activated cell sorting and immunocytochemistry) level show that CD30 is expressed in undifferentiated hESC,even at very early passages,without any correlation with the presence of chromosomal anomalies. We also show that the expression of CD30 is rapidly lost during early spontaneous differentiation of hESC.backslashnbackslashnCONCLUSION: We conclude that CD30 expression in hESC cultures is probably a consequence of culture conditions,and that KO-SR may play a role. In addition,the expression of so-called 'stemness' markers does not change in undifferentiated hESC during long-term culture or when cells acquire chromosomal abnormalities.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Onuma Y et al. (FEB 2013)
Biochemical and biophysical research communications 431 3 524--529
RBC2LCN, a new probe for live cell imaging of human pluripotent stem cells
Cell surface biomarkers have been applied to discriminate pluripotent human embryonic stem cells and induced pluripotent stem cells from differentiated cells. Here,we demonstrate that a recombinant lectin probe,rBC2LCN,a new tool for fluorescence-based imaging and flow cytometry analysis of pluripotent stem cells,is an alternative to conventional pluripotent maker antibodies. Live or fixed colonies of both human embryonic stem cells and induced pluripotent stem cells were visualized in culture medium containing fluorescent dye-labeled rBC2LCN. Fluorescent dye-labeled rBC2LCN was also successfully used to separate live pluripotent stem cells from a mixed cell population by flow cytometry. textcopyright 2013 Elsevier Inc.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Zhang X et al. (NOV 2014)
Stem Cell Research 13 Part A 379--389
Src-family tyrosine kinase activities are essential for differentiation of human embryonic stem cells
Embryonic stem (ES) cells are characterized by pluripotency,defined as the developmental potential to generate cell lineages derived from all three primary germ layers. In the past decade,great progress has been made on the cell culture conditions,transcription factor programs and intracellular signaling pathways that control both murine and human ES cell fates. ES cells of mouse vs. human origin have distinct culture conditions,responding to some tyrosine kinase signaling pathways in opposite ways. Previous work has implicated the Src family of non-receptor protein-tyrosine kinases in mouse ES cell self-renewal and differentiation. Seven members of the Src kinase family are expressed in mouse ES cells,and individual family members appear to play distinct roles in regulating their developmental fate. Both Hck and c-Yes are important in self-renewal,while c-Src activity alone is sufficient to induce differentiation. While these findings implicate Src-family kinase signaling in mouse ES cell renewal and differentiation,the role of this kinase family in human ES cells is largely unknown. Here,we explored Src-family kinase expression patterns and signaling in human ES cells during self-renewal and differentiation. Of the eleven Src-related kinases in the human genome,Fyn,c-Yes,c-Src,Lyn,Lck and Hck were expressed in H1,H7 and H9 hES cells,while Fgr,Blk,Srm,Brk,and Frk transcripts were not detected. Of these,c-Yes,Lyn,and Hck transcript levels remained constant in self-renewing human ES cells vs. differentiated EBs,while c-Src and Fyn showed a modest increase in expression as a function of differentiation. In contrast,Lck expression levels dropped dramatically as a function of EB differentiation. To assess the role of overall Src-family kinase activity in human ES cell differentiation,cultures were treated with inhibitors specific for the Src kinase family. Remarkably,human ES cells maintained in the presence of the potent Src-family kinase inhibitor A-419259 retained the morphology of domed,pluripotent colonies and continued to express the self-renewal marker TRA-1-60 despite culture under differentiation conditions. Taken together,these observations support a role for Src-family kinase signaling in the regulation of human ES cell fate,and suggest that the activities of individual Src-family members are required for the initiation of the differentiation program.
View Publication
产品类型:
产品号#:
07913
07920
05893
85850
85857
产品名:
Dispase(5 U/mL)
ACCUTASE™
AggreWell™ EB形成培养基
mTeSR™1
mTeSR™1
文献
Hawley RG et al. (JAN 2006)
Methods in enzymology 419 149--79
Hematopoietic stem cells.
Hematopoietic stem cells (HSCs) have the capacity to self-renew and the potential to differentiate into all of the mature blood cell types. The ability to prospectively identify and isolate HSCs has been the subject of extensive investigation since the first transplantation studies implying their existence almost 50 years ago. Despite significant advances in enrichment protocols,the continuous in vitro propagation of human HSCs has not yet been achieved. This chapter describes current procedures used to phenotypically and functionally characterize candidate human HSCs and initial efforts to derive permanent human HSC lines.
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™工具
ALDEFLUOR™DEAB试剂
文献
Liang D and Shi Y (JUN 2012)
Medical oncology (Northwood,London,England) 29 2 633--9
Aldehyde dehydrogenase-1 is a specific marker for stem cells in human lung adenocarcinoma.
To investigate whether aldehyde dehydrogenase-1 (ALDH-1) in human lung cancer can be used as a sorting marker for stem cells in targeted therapies against human lung cancer. Spheres were induced by incubating cancer cells in a serum-free medium and formed with epidermal growth factor and fibroblast growth factor-10 (FGF10). Spheroid cells were combined with flow cytometry using the Aldefluor reagent to separate the SSCloALDEbr (ALDH-1-positive) cells. Cancer stem cells (CSCs) were characterized by their proliferation,colony formation,and tumorigenesis in nude mice and using phenotypic analysis. Float-growing spheres (pulmospheres") were developed after SPC-A1 cells were cultured in a serum-free medium. The resultant sphere-forming cells included ALDH-1-positive cells as high as 15.13%. ALDH-1-positive CSCs have high proliferative ability�
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™工具
ALDEFLUOR™DEAB试剂
文献
Leong MF et al. (SEP 2016)
Tissue engineering. Part C,Methods 22 9 884--894
Alginate Microfiber System for Expansion and Direct Differentiation of Human Embryonic Stem Cells.
Pluripotent human embryonic stem cells (hESCs) are a potential renewable cell source for regenerative medicine and drug testing. To obtain adequate cell numbers for these applications,there is a need to develop scalable cell culture platforms to propagate hESCs. In this study,we encapsulated hESCs in calcium alginate microfibers as single cells,for expansion and differentiation under chemically defined conditions. hESCs were suspended in 1% (w/v) alginate solution at high cell density (textgreater10(7) cells/mL) and extruded at 5 m/min into a low calcium concentration bath (10 mM) for gelation. Mild citrate buffer (2.5 mM),which did not affect hESCs viability,was used to release the cells from the calcium alginate hydrogel. Encapsulation as single cells was critical,as this allowed the hESCs to grow in the form of relatively small and uniform aggregates. This alginate microfiber system allowed for expansion of an hESC line,HUES7,for up to five passages while maintaining pluripotency. Immunohistochemistry,polymerase chain reaction,and other analyses showed that passage 5 (P5) HUES7 cells expressed proteins and genes characteristic of pluripotent stem cells,possessed normal karyotype,and were able to form representative tissues of the three embryonic germ layers in vitro and in vivo. Encapsulated HUES7 cells at P5 could also be induced to directly differentiate into liver-like cells. Collectively,our experiments show that the alginate microfiber system can be used as a three-dimensional cell culture platform for long-term expansion and differentiation of hESCs under defined conditions.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Srour EF et al. (APR 2005)
Blood 105 8 3109--16
Modulation of in vitro proliferation kinetics and primitive hematopoietic potential of individual human CD34+CD38-/lo cells in G0.
Whether cytokines can modulate the fate of primitive hematopoietic progenitor cells (HPCs) through successive in vitro cell divisions has not been established. Single human marrow CD34+CD38-/lo cells in the G0 phase of cell cycle were cultured under 7 different cytokine combinations,monitored for proliferation on days 3,5,and 7,then assayed for long-term culture-initiating cell (LTC-IC) function on day 7. LTC-IC function was then retrospectively correlated with prior number of in vitro cell divisions to determine whether maintenance of LTC-IC function after in vitro cell division is dependent on cytokine exposure. In the presence of proliferation progression signals,initial cell division was independent of cytokine stimulation,suggesting that entry of primitive HPCs into the cell cycle is a stochastic property. However,kinetics of proliferation beyond day 3 and maintenance of LTC-IC function were sensitive to cytokine stimulation,such that LTC-IC underwent an initial long cell cycle,followed by more synchronized shorter cycles varying in length depending on the cytokine combination. Nonobese diabetic/severe combined immunodeficiency (NOD/SCID) transplantation studies revealed analogous results to those obtained with LTC-ICs. These data suggest that although exit from quiescence and commitment to proliferation might be stochastic,kinetics of proliferation,and possibly fate of primitive HPCs,might be modulated by extrinsic factors.
View Publication
产品类型:
产品号#:
05150
产品名:
MyeloCult™H5100
文献
Hogge D et al. (MAR 1997)
British journal of haematology 96 4 790--800
Quantitation and characterization of human megakaryocyte colony-forming cells using a standardized serum-free agarose assay.
Human progenitors of the megakaryocyte (Mk) lineage were detected by their ability to generate colonies-containing from 3 to textgreater 100 Mk,detectable as glycoprotein IIb/IIIa+ cells in APAAP-stained whole mount agarose cultures. Optimal growth conditions were achieved through the use of a defined serum substitute and a suitable cocktail of recombinant cytokines. Under these culture conditions,the smallest Mk-containing colonies (CFC-Mk) were detectable within a week followed by colonies containing larger numbers of Mk over the ensuing 2 weeks. The total number of CFC-Mk at 18-21 d was linearly related to the number of cells plated. Variation in the cytokines added showed that thrombopoietin (TPO) or IL-3 alone would support the formation of large numbers of CFC-Mk. However,optimal yields of colonies containing cells of both Mk and non-Mk lineages required the addition of other growth factors,of which a combination of IL-3,IL-6,GM-CSF and Steel factor (SF) +/- TPO was the best of those tested. The further addition of erythropoietin to this combination reduced the number of large pure' Mk colonies seen and in their place a corresponding number of mixed erythroid-Mk colonies became detectable. Flt3-ligand alone was unable to support the growth of CFC-Mk nor did it enhance their growth when combined with other factors. Plating of FACS-sorted sub-populations of CD34+ marrow cells in both serum-free agarose and methylcellulose assays demonstrated that most CFC-Mk are generated from CD34+ cells that are CD45RA- and CD71+�
View Publication
产品类型:
产品号#:
04961
04962
04850
04974
04902
04960
04900
04901
04963
04970
04971
产品名:
MegaCult™-C胶原蛋白和细胞因子培养基
MegaCult™-C cfu染色试剂盒
MegaCult™-C含脂培养基
MegaCult™-C胶原蛋白和脂质培养基
胶原蛋白溶液
MegaCult™-C胶原蛋白和不含细胞因子的培养基
MegaCult™-C培养基无细胞因子
MegaCult™-C细胞因子培养基
双室载玻片试剂盒
MegaCult™-C不含细胞因子完整试剂盒
MegaCult™-C细胞因子完整试剂盒
文献
Yen J et al. (JUL 2013)
Biomaterials Science 1 7 719--727
Cationic, helical polypeptide-based gene delivery for IMR-90 fibroblasts and human embryonic stem cells
Diblock copolymers consisting of poly(ethylene glycol)-block-poly(γ-4-(((2-(piperidin-1-yl)ethyl)amino)methyl)benzyl-l-glutamate) (PEG-b-PVBLG-8) were synthesized and evaluated for their ability to mediate gene delivery in hard-to-transfect cells like IMR-90 human fetal lung fibroblasts and human embryonic s
View Publication