Puri MC and Bernstein A (OCT 2003)
Proceedings of the National Academy of Sciences of the United States of America 100 22 12753--8
Requirement for the TIE family of receptor tyrosine kinases in adult but not fetal hematopoiesis.
In mammals,the continuous production of hematopoietic cells (HCs) is sustained by a small number of hematopoietic stem cells (HSCs) residing in the bone marrow. Early HSC activity arises in the aorta-gonad mesonephros region,within cells localized to the ventral floor of the major blood vessels,suggesting that the first HSCs may be derived from cells capable of giving rise to the hematopoietic system and to the endothelial cells of the vasculature. TIE1 (TIE) and TIE2 (TEK) are related receptor tyrosine kinases with an embryonic expression pattern in endothelial cells,their precursors,and HCs,suggestive of a role in the divergence and function of both lineages. Indeed,gene targeting approaches have shown that TIE1,TIE2,and ligands for TIE2,the angiopoietins,are essential for vascular development and maintenance. To explore possible roles for these receptors in HCs,we have examined the ability of embryonic cells lacking both TIE1 and TIE2 to contribute to developmental and adult hematopoiesis by generating chimeric animals between normal embryonic cells and cells lacking these receptors. We show here that TIE receptors are not required for differentiation and proliferation of definitive hematopoietic lineages in the embryo and fetus; surprisingly,however,these receptors are specifically required during postnatal bone marrow hematopoiesis.
View Publication
产品类型:
产品号#:
03434
03444
产品名:
MethoCult™GF M3434
MethoCult™GF M3434
文献
Park I-K et al. (MAR 2009)
Blood 113 11 2470--7
The Axl/Gas6 pathway is required for optimal cytokine signaling during human natural killer cell development.
Interleukin-15 (IL-15) is essential for natural killer (NK) cell differentiation. In this study,we assessed whether the receptor tyrosine kinase Axl and its ligand,Gas6,are involved in IL-15-mediated human NK differentiation from CD34(+) hematopoietic progenitor cells (HPCs). Blocking the Axl-Gas6 interaction with a soluble Axl fusion protein (Axl-Fc) or the vitamin K inhibitor warfarin significantly diminished the absolute number and percentage of CD3(-)CD56(+) NK cells derived from human CD34(+) HPCs cultured in the presence of IL-15,probably resulting in part from reduced phosphorylation of STAT5. In addition,CD3(-)CD56(+) NK cells derived from culture of CD34(+) HPCs with IL-15 and Axl-Fc had a significantly diminished capacity to express interferon-gamma or its master regulator,T-BET. Culture of CD34(+) HPCs in the presence of c-Kit ligand and Axl-Fc resulted in a significant decrease in the frequency of NK precursor cells responding to IL-15,probably the result of reduced c-Kit phosphorylation. Collectively,our data suggest that the Axl/Gas6 pathway contributes to normal human NK-cell development,at least in part via its regulatory effects on both the IL-15 and c-Kit signaling pathways in CD34(+) HPCs,and to functional NK-cell maturation via an effect on the master regulatory transcription factor T-BET.
View Publication
产品类型:
产品号#:
15026
15066
产品名:
RosetteSep™人造血祖细胞富集抗体混合物
RosetteSep™人造血祖细胞富集抗体混合物
文献
Jimeno A et al. (FEB 2009)
Molecular cancer therapeutics 8 2 310--4
A direct pancreatic cancer xenograft model as a platform for cancer stem cell therapeutic development.
There is an enormous gap between the antiproliferative and in vivo antitumor efficacy of gemcitabine in cell line-based models and its clinical efficacy. This may be due to insensitiveness of the precursor,cancer stem cell (CSC) compartment to cytotoxic agents. The hedgehog pathway is associated with CSC signaling and control. We used a direct xenograft model of pancreatic cancer and a two-stage approach was used to test the hypotheses that targeting CSC could increase the efficacy of gemcitabine. Tumors from a gemcitabine-sensitive xenograft were treated with gemcitabine first,and randomized,after tumor regression to continuing treatment with gemcitabine,a hedgehog inhibitor alone or in combination with gemcitabine. We tested markers described as associated with CSC such as CD24,CD44,ALDH,nestin,and the hedgehog pathway. After induction with gemcitabine,treated tumor showed an enrichment in CSC markers such as ALDH and CD24. Subsequently,a release from gemcitabine prompted a repopulation of proliferating cells and a decrease in such markers to equilibrate from pretreatment levels. Combined treatment with gemcitabine and cyclopamine induced tumor regression and decrease in CSC markers and hedgehog signaling. Cytoplasmic CD24 and ALDH were inversely and strongly associated with growth and were expressed in a minority of cells that we propose constitute the CSC compartment. Hedgehog inhibitors as part of a dual compartment therapeutic approach were able to further reduce tumor growth and decreased both static and dynamic markers of CSC. Direct tumor xenografts are a valid platform to test multicompartment therapeutic approaches in pancreatic cancer.
View Publication
产品类型:
产品号#:
01700
01705
01702
产品名:
ALDEFLUOR™工具
ALDEFLUOR™DEAB试剂
ALDEFLUOR™测定缓冲液
文献
Park SY et al. (FEB 2010)
Clinical cancer research : an official journal of the American Association for Cancer Research 16 3 876--87
Heterogeneity for stem cell-related markers according to tumor subtype and histologic stage in breast cancer.
PURPOSE: To evaluate the expression of stem cell-related markers at the cellular level in human breast tumors of different subtypes and histologic stage. EXPERIMENTAL DESIGN: We performed immunohistochemical analyses of 12 proteins [CD44,CD24,ALDH1,vimentin,osteonectin,EPCR,caveolin 1,connexin 43,cytokeratin 18 (CK18),MUC1,claudin 7,and GATA3] selected based on their differential expression in breast cancer cells with more differentiated and stem cell-like characteristics in 47 cases of invasive ductal carcinoma (IDC) only,135 cases of IDC with ductal carcinoma in situ (DCIS),35 cases of DCIS with microinvasion,and 58 cases of pure DCIS. We also analyzed 73 IDCs with adjacent DCIS to determine the differences in the expression of markers by histology within individual tumors. CD44+/CD24- and CD24-/CD24+ cells were detected using double immunohistochemistry. RESULTS: CD44 and EPCR expression was different among the four histologic groups and was lower in invasive compared with in situ tumors,especially in luminal A subtype. The expression of vimentin,osteonectin,connexin 43,ALDH1,CK18,GATA3,and MUC1 differed by tumor subtype in some histologic groups. ALDH1-positive cells were more frequent in basal-like and HER2+ than in luminal tumors. CD44+/CD24- cells were detected in 69% of all tumors with 100% of the basal-like and 52% of HER2+ tumors having some of these cells. CONCLUSIONS: Our findings suggest that in breast cancer,the frequency of tumor cells positive for stem cell-like and more differentiated cell markers varies according to tumor subtype and histologic stage.
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™工具
ALDEFLUOR™DEAB试剂
文献
Hansen SK et al. (AUG 2016)
Stem cell research 17 2 306--317
Induced pluripotent stem cell - derived neurons for the study of spinocerebellar ataxia type 3.
The neurodegenerative disease spinocerebellar ataxia type 3 (SCA3) is caused by a CAG-repeat expansion in the ATXN3 gene. In this study,induced pluripotent stem cell (iPSC) lines were established from two SCA3 patients. Dermal fibroblasts were reprogrammed using an integration-free method and the resulting SCA3 iPSCs were differentiated into neurons. These neuronal lines harbored the disease causing mutation,expressed comparable levels of several neuronal markers and responded to the neurotransmitters,glutamate/glycine,GABA and acetylcholine. Additionally,all neuronal cultures formed networks displaying synchronized spontaneous calcium oscillations within 28days of maturation,and expressed the mature neuronal markers NeuN and Synapsin 1 implying a relatively advanced state of maturity,although not comparable to that of the adult human brain. Interestingly,we were not able to recapitulate the glutamate-induced ataxin-3 aggregation shown in a previously published iPSC-derived SCA3 model. In conclusion,we have generated a panel of SCA3 patient iPSCs and a robust protocol to derive neurons of relatively advanced maturity,which could potentially be valuable for the study of SCA3 disease mechanisms.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Lehmann JM et al. (JUN 1995)
The Journal of biological chemistry 270 22 12953--6
An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma).
Thiazolidinedione derivatives are antidiabetic agents that increase the insulin sensitivity of target tissues in animal models of non-insulin-dependent diabetes mellitus. In vitro,thiazolidinediones promote adipocyte differentiation of preadipocyte and mesenchymal stem cell lines; however,the molecular basis for this adipogenic effect has remained unclear. Here,we report that thiazolidinediones are potent and selective activators of peroxisome proliferator-activated receptor gamma (PPAR gamma),a member of the nuclear receptor superfamily recently shown to function in adipogenesis. The most potent of these agents,BRL49653,binds to PPAR gamma with a Kd of approximately 40 nM. Treatment of pluripotent C3H10T1/2 stem cells with BRL49653 results in efficient differentiation to adipocytes. These data are the first demonstration of a high affinity PPAR ligand and provide strong evidence that PPAR gamma is a molecular target for the adipogenic effects of thiazolidinediones. Furthermore,these data raise the intriguing possibility that PPAR gamma is a target for the therapeutic actions of this class of compounds.
View Publication
Enzymology of mitomycin C metabolic activation in tumour tissue: implications for enzyme-directed bioreductive drug development.
Mitomycin C (MMC) is the prototype bioreductive DNA alkylating agent. To exploit its unique properties and maximize patient responses,different therapeutic approaches have been investigated. Recently,the focus has concentrated on monitoring the levels of the proteins metabolizing the drug and relating these to activity in a regimen referred to as enzyme-directed bioreductive drug development. To be successful,it is important to understand the enzymology of metabolic activation not only in cell lines but also in solid tumour models. A general mechanism of action for MMC has now emerged that is activated regardless of the source of reducing equivalents,comprising three competing pathways that give rise to unique reactive intermediates and different DNA adducts. Partitioning into the pathways is dictated by chemical considerations such as pH and drug concentration. DT-diaphorase stands out in this mechanism,since it is much less effective at metabolizing MMC at neutral pH. At least five different enzymes can catalyse MMC bioreduction in vitro,and as many activities may be present in solid tumours,including a series of novel mitochondrial reductases such as a cytochrome P450 reductase. Competition between reductases for MMC appears to be based solely on protein levels rather than enzyme kinetics. Consequentially,DT-diaphorase can occupy a central role in MMC metabolic activation since it is often highly overexpressed in cancer cells. Although a good correlation has been observed in cell lines between DT-diaphorase expression and aerobic cytotoxicity,this does not hold consistently in vivo for any single bioreductive enzyme,suggesting revision of the enzyme-directed hypothesis as originally formulated.
View Publication
产品类型:
产品号#:
73274
产品名:
丝裂霉素C
文献
O. Rodr\'iguez-Jorge et al. (apr 2019)
Science signaling 12 577
Cooperation between T cell receptor and Toll-like receptor 5 signaling for CD4+ T cell activation.
CD4+ T cells recognize antigens through their T cell receptors (TCRs); however,additional signals involving costimulatory receptors,for example,CD28,are required for proper T cell activation. Alternative costimulatory receptors have been proposed,including members of the Toll-like receptor (TLR) family,such as TLR5 and TLR2. To understand the molecular mechanism underlying a potential costimulatory role for TLR5,we generated detailed molecular maps and logical models for the TCR and TLR5 signaling pathways and a merged model for cross-interactions between the two pathways. Furthermore,we validated the resulting model by analyzing how T cells responded to the activation of these pathways alone or in combination,in terms of the activation of the transcriptional regulators CREB,AP-1 (c-Jun),and NF-kappaB (p65). Our merged model accurately predicted the experimental results,showing that the activation of TLR5 can play a similar role to that of CD28 activation with respect to AP-1,CREB,and NF-kappaB activation,thereby providing insights regarding the cross-regulation of these pathways in CD4+ T cells.
View Publication
产品类型:
产品号#:
15022
15062
产品名:
RosetteSep™人CD4+ T细胞富集抗体混合物
RosetteSep™人CD4+ T细胞富集抗体混合物
文献
Jia B et al. (JUL 2014)
Life Sciences 108 1 22--29
Modeling of hemophilia A using patient-specific induced pluripotent stem cells derived from urine cells
Aims Hemophilia A (HA) is a severe,congenital bleeding disorder caused by the deficiency of clotting factor VIII (FVIII). For years,traditional laboratory animals have been used to study HA and its therapies,although animal models may not entirely mirror the human pathophysiology. Human induced pluripotent stem cells (iPSCs) can undergo unlimited self-renewal and differentiate into all cell types. This study aims to generate hemophilia A (HA) patient-specific iPSCs that differentiate into disease-affected hepatocyte cells. These hepatocytes are potentially useful for in vitro disease modeling and provide an applicable cell source for autologous cell therapy after genetic correction. Main methods In this study,we mainly generated iPSCs from urine collected from HA patients with integration-free episomal vectors PEP4-EO2S-ET2K containing human genes OCT4,SOX2,SV40LT and KLF4,and differentiated these iPSCs into hepatocyte-like cells. We further identified the genetic phenotype of the FVIII genes and the FVIII activity in the patient-specific iPSC derived hepatic cells. Key findings HA patient-specific iPSCs (HA-iPSCs) exhibited typical pluripotent properties evident by immunostaining,in vitro assays and in vivo assays. Importantly,we showed that HA-iPSCs could differentiate into functional hepatocyte-like cells and the HA-iPSC-derived hepatocytes failed to produce FVIII,but otherwise functioned normally,recapitulating the phenotype of HA disease in vitro. Significance HA-iPSCs,particular those generated from the urine using a non-viral approach,provide an efficient way for modeling HA in vitro. Furthermore,HA-iPSCs and their derivatives serve as an invaluable cell source that can be used for gene and cell therapy in regenerative medicine. textcopyright 2014 Elsevier Inc.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Wamaitha SE et al. (JUN 2015)
Genes & development 29 12 1239--1255
Gata6 potently initiates reprograming of pluripotent and differentiated cells to extraembryonic endoderm stem cells.
Transcription factor-mediated reprograming is a powerful method to study cell fate changes. In this study,we demonstrate that the transcription factor Gata6 can initiate reprograming of multiple cell types to induced extraembryonic endoderm stem (iXEN) cells. Intriguingly,Gata6 is sufficient to drive iXEN cells from mouse pluripotent cells and differentiated neural cells. Furthermore,GATA6 induction in human embryonic stem (hES) cells also down-regulates pluripotency gene expression and up-regulates extraembryonic endoderm (ExEn) genes,revealing a conserved function in mediating this cell fate switch. Profiling transcriptional changes following Gata6 induction in mES cells reveals step-wise pluripotency factor disengagement,with initial repression of Nanog and Esrrb,then Sox2,and finally Oct4,alongside step-wise activation of ExEn genes. Chromatin immunoprecipitation and subsequent high-throughput sequencing analysis shows Gata6 enrichment near pluripotency and endoderm genes,suggesting that Gata6 functions as both a direct repressor and activator. Together,this demonstrates that Gata6 is a versatile and potent reprograming factor that can act alone to drive a cell fate switch from diverse cell types.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Hunger RE et al. (MAR 2004)
The Journal of clinical investigation 113 5 701--8
Langerhans cells utilize CD1a and langerin to efficiently present nonpeptide antigens to T cells.
Langerhans cells (LCs) constitute a subset of DCs that initiate immune responses in skin. Using leprosy as a model,we investigated whether expression of CD1a and langerin,an LC-specific C-type lectin,imparts a specific functional role to LCs. LC-like DCs and freshly isolated epidermal LCs presented nonpeptide antigens of Mycobacterium leprae to T cell clones derived from a leprosy patient in a CD1a-restricted and langerin-dependent manner. LC-like DCs were more efficient at CD1a-restricted antigen presentation than monocyte-derived DCs. LCs in leprosy lesions coexpress CD1a and langerin,placing LCs in position to efficiently present a subset of antigens to T cells as part of the host response to human infectious disease.
View Publication
产品类型:
产品号#:
15026
15066
产品名:
RosetteSep™人造血祖细胞富集抗体混合物
RosetteSep™人造血祖细胞富集抗体混合物
文献
Haniffa MA et al. (AUG 2007)
Journal of immunology (Baltimore,Md. : 1950) 179 3 1595--604
Adult human fibroblasts are potent immunoregulatory cells and functionally equivalent to mesenchymal stem cells.
Bone marrow mesenchymal stem cells (MSC) have potent immunosuppressive properties and have been advocated for therapeutic use in humans. The nature of their suppressive capacity is poorly understood but is said to be a primitive stem cell function. Demonstration that adult stromal cells such as fibroblasts (Fb) can modulate T cells would have important implications for immunoregulation and cellular therapy. In this report,we show that dermal Fb inhibit allogeneic T cell activation by autologously derived cutaneous APCs and other stimulators. Fb mediate suppression through soluble factors,but this is critically dependent on IFN-gamma from activated T cells. IFN-gamma induces IDO in Fb,and accelerated tryptophan metabolism is at least partly responsible for suppression of T cell proliferation. T cell suppression is reversible,and transient exposure to Fb during activation reprograms T cells,increasing IL-4 and IL-10 secretion upon restimulation. Increased Th2 polarization by stromal cells is associated with amelioration of pathological changes in a human model of graft-vs-host disease. Dermal Fb are highly clonogenic in vitro,suggesting that Fb-mediated immunosuppression is not due to outgrowth of rare MSC,although dermal Fb remain difficult to distinguish from MSC by phenotype or transdifferentiation capacity. These results suggest that immunosuppression is a general property of stromal cells and that dermal Fb may provide an alternative and accessible source of cellular therapy.
View Publication