He X et al. (MAY 2016)
Nucleic acids research 44 9 e85
Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair.
CRISPR/Cas9-induced site-specific DNA double-strand breaks (DSBs) can be repaired by homology-directed repair (HDR) or non-homologous end joining (NHEJ) pathways. Extensive efforts have been made to knock-in exogenous DNA to a selected genomic locus in human cells; which,however,has focused on HDR-based strategies and was proven inefficient. Here,we report that NHEJ pathway mediates efficient rejoining of genome and plasmids following CRISPR/Cas9-induced DNA DSBs,and promotes high-efficiency DNA integration in various human cell types. With this homology-independent knock-in strategy,integration of a 4.6 kb promoterless ires-eGFP fragment into the GAPDH locus yielded up to 20% GFP+ cells in somatic LO2 cells,and 1.70% GFP+ cells in human embryonic stem cells (ESCs). Quantitative comparison further demonstrated that the NHEJ-based knock-in is more efficient than HDR-mediated gene targeting in all human cell types examined. These data support that CRISPR/Cas9-induced NHEJ provides a valuable new path for efficient genome editing in human ESCs and somatic cells.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Konki M et al. (FEB 2016)
Scientific reports 6 February 22190
Epigenetic Silencing of the Key Antioxidant Enzyme Catalase in Karyotypically Abnormal Human Pluripotent Stem Cells.
Epigenomic regulation is likely to be important in the maintenance of genomic integrity of human pluripotent stem cells,however,the mechanisms are unknown. We explored the epigenomes and transcriptomes of human pluripotent stem cells before and after spontaneous transformation to abnormal karyotypes and in correlation to cancer cells. Our results reveal epigenetic silencing of Catalase,a key regulator of oxidative stress and DNA damage control in abnormal cells. Our findings provide novel insight into the mechanisms associated with spontaneous transformation of human pluripotent stem cells towards malignant fate. The same mechanisms may control the genomic stability of cells in somatic tissues.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Cipriano AF et al. (JAN 2017)
Acta biomaterialia 48 499--520
Cytocompatibility and early inflammatory response of human endothelial cells in direct culture with Mg-Zn-Sr alloys.
Crystalline Mg-Zinc (Zn)-Strontium (Sr) ternary alloys consist of elements naturally present in the human body and provide attractive mechanical and biodegradable properties for a variety of biomedical applications. The first objective of this study was to investigate the degradation and cytocompatibility of four Mg-4Zn-xSr alloys (x=0.15,0.5,1.0,1.5wt%; designated as ZSr41A,B,C,and D respectively) in the direct culture with human umbilical vein endothelial cells (HUVEC) in vitro. The second objective was to investigate,for the first time,the early-stage inflammatory response in cultured HUVECs as indicated by the induction of vascular cellular adhesion molecule-1 (VCAM-1). The results showed that the 24-h in vitro degradation of the ZSr41 alloys containing a β-phase with a Zn/Sr at% ratio ∼1.5 was significantly faster than the ZSr41 alloys with Zn/Sr at% ∼1. Additionally,the adhesion density of HUVECs in the direct culture but not in direct contact with the ZSr41 alloys for up to 24h was not adversely affected by the degradation of the alloys. Importantly,neither culture media supplemented with up to 27.6mM Mg(2+) ions nor media intentionally adjusted up to alkaline pH 9 induced any detectable adverse effects on HUVEC responses. In contrast,the significantly higher,yet non-cytotoxic,Zn(2+) ion concentration from the degradation of ZSr41D alloy was likely the cause for the initially higher VCAM-1 expression on cultured HUVECs. Lastly,analysis of the HUVEC-ZSr41 interface showed near-complete absence of cell adhesion directly on the sample surface,most likely caused by either a high local alkalinity,change in surface topography,and/or surface composition. The direct culture method used in this study was proposed as a valuable tool for studying the design aspects of Zn-containing Mg-based biomaterials in vitro,in order to engineer solutions to address current shortcomings of Mg alloys for vascular device applications. STATEMENT OF SIGNIFICANCE Magnesium (Mg) alloys specifically designed for biodegradable implant applications have been the focus of biomedical research since the early 2000s. Physicochemical properties of Mg alloys make these metallic biomaterials excellent candidates for temporary biodegradable implants in orthopedic and cardiovascular applications. As Mg alloys continue to be investigated for biomedical applications,it is necessary to understand whether Mg-based materials or the alloying elements have the intrinsic ability to direct an immune response to improve implant integration while avoiding cell-biomaterial interactions leading to chronic inflammation and/or foreign body reactions. The present study utilized the direct culture method to investigate for the first time the in vitro transient inflammatory activation of endothelial cells induced by the degradation products of Zn-containing Mg alloys.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Galat Y et al. (MAR 2017)
Stem cell research & therapy 8 1 67
Cytokine-free directed differentiation of human pluripotent stem cells efficiently produces hemogenic endothelium with lymphoid potential.
BACKGROUND The robust generation of human hematopoietic progenitor cells from induced or embryonic pluripotent stem cells would be beneficial for multiple areas of research,including mechanistic studies of hematopoiesis,the development of cellular therapies for autoimmune diseases,induced transplant tolerance,anticancer immunotherapies,disease modeling,and drug/toxicity screening. Over the past years,significant progress has been made in identifying effective protocols for hematopoietic differentiation from pluripotent stem cells and understanding stages of mesodermal,endothelial,and hematopoietic specification. Thus,it has been shown that variations in cytokine and inhibitory molecule treatments in the first few days of hematopoietic differentiation define primitive versus definitive potential of produced hematopoietic progenitor cells. The majority of current feeder-free,defined systems for hematopoietic induction from pluripotent stem cells include prolonged incubations with various cytokines that make the differentiation process complex and time consuming. We established that the application of Wnt agonist CHIR99021 efficiently promotes differentiation of human pluripotent stem cells in the absence of any hematopoietic cytokines to the stage of hemogenic endothelium capable of definitive hematopoiesis. METHODS The hemogenic endothelium differentiation was accomplished in an adherent,serum-free culture system by applying CHIR99021. Hemogenic endothelium progenitor cells were isolated on day 5 of differentiation and evaluated for their endothelial,myeloid,and lymphoid potential. RESULTS Monolayer induction based on GSK3 inhibition,described here,yielded a large number of CD31(+)CD34(+) hemogenic endothelium cells. When isolated and propagated in adherent conditions,these progenitors gave rise to mature endothelium. When further cocultured with OP9 mouse stromal cells,these progenitors gave rise to various cells of myeloid lineages as well as natural killer lymphoid,T-lymphoid,and B-lymphoid cells. CONCLUSION The results of this study substantiate a method that significantly reduces the complexity of current protocols for hematopoietic induction,offers a defined system to study the factors that affect the early stages of hematopoiesis,and provides a new route of lymphoid and myeloid cell derivation from human pluripotent stem cells,thus enhancing their use in translational medicine.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Shao RG et al. ( 1996)
Experimental cell research 227 2 190--196
Brefeldin A is a potent inducer of apoptosis in human cancer cells independently of p53.
Brefeldin A (BFA) is a natural product that affects the structure and function of the Golgi apparatus and is in development for cancer chemotherapy. We observed that a wide range of cancer cells could undergo DNA fragmentation associated with apoptosis after BFA treatment. This DNA fragmentation was induced within 15 h in HL60 leukemia cells and after 48 h in K562 leukemia and HT-29 colon carcinoma cells with BFA concentrations as low as 0.1 microM. The DNA fragmentation had the typical internucleosomal pattern in HL60 and HT-29 cells. Apoptotic cells were also detected by microscopy. BFA-induced apoptosis is p53-independent as HL60 and K562 cells are p53 null and HT-29 are p53 mutant cells. BFA could potentiate UCN-01 and staurosporine-induced DNA fragmentation in HL60 cells. Cyclin B1/Cdc2 kinase activity decreased after BFA treatment in HL60 cells,indicating that BFA-induced DNA fragmentation was independent of a cyclin B1/Cdc2 kinase upregulation pathway. Cycloheximide could not prevent BFA-induced DNA fragmentation in HL60 cells,suggesting that protein synthesis is not needed for HL60 cells to undergo apoptosis. On the contrary,cycloheximide blocked BFA-induced DNA fragmentation in HT-29 cells,indicating that apoptosis in HT-29 cells requires macromolecular synthesis. Cell-free system experiments suggested that cytosolic proteins play an important role in triggering DNA fragmentation during apoptosis induced by BFA. Our results show that transduction signaling pathways play central roles in apoptotic regulation.
View Publication
产品类型:
产品号#:
73012
73014
产品名:
布雷非德菌素A
布雷非德菌素A
文献
Jiang P et al. (OCT 2014)
British Journal of Cancer 111 8 1562--1571
In vitro and in vivo anticancer effects of mevalonate pathway modulation on human cancer cells
BACKGROUND The increasing usage of statins (the 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors) has revealed a number of unexpected beneficial effects,including a reduction in cancer risk. METHODS We investigated the direct anticancer effects of different statins approved for clinical use on human breast and brain cancer cells. We also explored the effects of statins on cancer cells using in silico simulations. RESULTS In vitro studies showed that cerivastatin,pitavastatin,and fluvastatin were the most potent anti-proliferative,autophagy inducing agents in human cancer cells including stem cell-like primary glioblastoma cell lines. Consistently,pitavastatin was more effective than fluvastatin in inhibiting U87 tumour growth in vivo. Intraperitoneal injection was much better than oral administration in delaying glioblastoma growth. Following statin treatment,tumour cells were rescued by adding mevalonate and geranylgeranyl pyrophosphate. Knockdown of geranylgeranyl pyrophosphate synthetase-1 also induced strong cell autophagy and cell death in vitro and reduced U87 tumour growth in vivo. These data demonstrate that statins main effect is via targeting the mevalonate synthesis pathway in tumour cells. CONCLUSIONS Our study demonstrates the potent anticancer effects of statins. These safe and well-tolerated drugs need to be further investigated as cancer chemotherapeutics in comprehensive clinical studies.
View Publication
产品类型:
产品号#:
05700
05702
产品名:
NeuroCult™ 基础培养基(小鼠和大鼠)
NeuroCult™扩增试剂盒(小鼠和大鼠)
文献
A. McQuade et al. (DEC 2018)
Molecular neurodegeneration 13 1 67
Development and validation of a simplified method to generate human microglia from pluripotent stem cells.
BACKGROUND Microglia,the principle immune cells of the brain,play important roles in neuronal development,homeostatic function and neurodegenerative disease. Recent genetic studies have further highlighted the importance of microglia in neurodegeneration with the identification of disease risk polymorphisms in many microglial genes. To better understand the role of these genes in microglial biology and disease,we,and others,have developed methods to differentiate microglia from human induced pluripotent stem cells (iPSCs). While the development of these methods has begun to enable important new studies of microglial biology,labs with little prior stem cell experience have sometimes found it challenging to adopt these complex protocols. Therefore,we have now developed a greatly simplified approach to generate large numbers of highly pure human microglia. RESULTS iPSCs are first differentiated toward a mesodermal,hematopoietic lineage using commercially available media. Highly pure populations of non-adherent CD43+ hematopoietic progenitors are then simply transferred to media that includes three key cytokines (M-CSF,IL-34,and TGF$\beta$-1) that promote differentiation of homeostatic microglia. This updated approach avoids the prior requirement for hypoxic incubation,complex media formulation,FACS sorting,or co-culture,thereby significantly simplifying human microglial generation. To confirm that the resulting cells are equivalent to previously developed iPSC-microglia,we performed RNA-sequencing,functional testing,and transplantation studies. Our findings reveal that microglia generated via this simplified method are virtually identical to iPS-microglia produced via our previously published approach. To also determine whether a small molecule activator of TGF$\beta$ signaling (IDE1) can be used to replace recombinant TGF$\beta$1,further reducing costs,we examined growth kinetics and the transcriptome of cells differentiated with IDE1. These data demonstrate that a microglial cell can indeed be produced using this alternative approach,although transcriptional differences do occur that should be considered. CONCLUSION We anticipate that this new and greatly simplified protocol will enable many interested labs,including those with little prior stem cell or flow cytometry experience,to generate and study human iPS-microglia. By combining this method with other advances such as CRISPR-gene editing and xenotransplantation,the field will continue to improve our understanding of microglial biology and their important roles in human development,homeostasis,and disease.
View Publication
Efficient differentiation of human pluripotent stem cells into functional CD34+ progenitor cells by combined modulation of the MEK/ERK and BMP4 signaling pathways.
Differentiation of human pluripotent stem cells (hPSCs) into functional cell types is a crucial step in cell therapy. In the present study,we demonstrate that functional CD34(+) progenitor cells can be efficiently produced from human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) by combined modulation of 2 signaling pathways. A higher proportion of CD34(+) cells (∼ 20%) could be derived from hPSCs by inhibition of mitogen-activated protein kinase (MAPK) extracellular signal-regulated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling and activation of bone morphogenic protein-4 (BMP4) signaling. hPSC-derived CD34(+) progenitor cells further developed to endothelial and smooth muscle cells with functionality. Moreover,they contributed directly to neovasculogenesis in ischemic mouse hind limbs,thereby resulting in improved blood perfusion and limb salvage. Our results suggest that combined modulation of signaling pathways may be an efficient means of differentiating hPSCs into functional CD34(+) progenitor cells.
View Publication
产品类型:
产品号#:
04434
04444
产品名:
MethoCult™H4434经典
MethoCult™H4434经典
文献
Zhou J et al. (MAY 2009)
Proceedings of the National Academy of Sciences of the United States of America 106 19 7840--5
mTOR supports long-term self-renewal and suppresses mesoderm and endoderm activities of human embryonic stem cells.
Despite the recent identification of the transcriptional regulatory circuitry involving SOX2,NANOG,and OCT-4,the intracellular signaling networks that control pluripotency of human embryonic stem cells (hESCs) remain largely undefined. Here,we demonstrate an essential role for the serine/threonine protein kinase mammalian target of rapamycin (mTOR) in regulating hESC long-term undifferentiated growth. Inhibition of mTOR impairs pluripotency,prevents cell proliferation,and enhances mesoderm and endoderm activities in hESCs. At the molecular level,mTOR integrates signals from extrinsic pluripotency-supporting factors and represses the transcriptional activities of a subset of developmental and growth-inhibitory genes,as revealed by genome-wide microarray analyses. Repression of the developmental genes by mTOR is necessary for the maintenance of hESC pluripotency. These results uncover a novel signaling mechanism by which mTOR controls fate decisions in hESCs. Our findings may contribute to effective strategies for tissue repair and regeneration.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Moon D-O et al. (FEB 2010)
Cancer letters 288 2 204--13
Butein induces G(2)/M phase arrest and apoptosis in human hepatoma cancer cells through ROS generation.
We investigated the molecular effects of 3,4,2',4'-tetrahydroxychalcone (butein) treatment in two human hepatoma cancer cell lines-HepG2 and Hep3B. Butein treatment inhibited cancer cell growth by inducing G(2)/M phase arrest and apoptosis. Butein-induced G(2)/M phase arrest was associated with increased ATM,Chk1,and Chk2 phosphorylations and reduced cdc25C levels. Additionally,butein treatment enhanced inactivated phospho-Cdc2 levels,reduced Cdc2 kinase activity,and generated reactive oxygen species (ROS) that was accompanied by JNK activation. The extent of butein-induced G(2)/M phase arrest significantly decreased following pretreatment with N-acetyl-l-cysteine or glutathione and following JNK phosphorylation reduction by SP600125. Both N-acetyl-l-cysteine and glutathione also decreased butein-mediated apoptosis. Taken together,these results imply a critical role of ROS and JNK in the anticancer effects of butein.
View Publication
产品类型:
产品号#:
73462
73464
产品名:
Butein
文献
Warren L et al. (NOV 2010)
Cell stem cell 7 5 618--630
Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA
Clinical application of induced pluripotent stem cells (iPSCs) is limited by the low efficiency of iPSC derivation and the fact that most protocols modify the genome to effect cellular reprogramming. Moreover,safe and effective means of directing the fate of patient-specific iPSCs toward clinically useful cell types are lacking. Here we describe a simple,nonintegrating strategy for reprogramming cell fate based on administration of synthetic mRNA modified to overcome innate antiviral responses. We show that this approach can reprogram multiple human cell types to pluripotency with efficiencies that greatly surpass established protocols. We further show that the same technology can be used to efficiently direct the differentiation of RNA-induced pluripotent stem cells (RiPSCs) into terminally differentiated myogenic cells. This technology represents a safe,efficient strategy for somatic cell reprogramming and directing cell fate that has broad applicability for basic research,disease modeling,and regenerative medicine. ?? 2010 Elsevier Inc.
View Publication