Microfluidic Image Cytometry for Single-Cell Phenotyping of Human Pluripotent Stem Cells
A microfluidic human pluripotent stem cell (hPSC) array has been developed for robust and reproducible hPSC culture methods to assess chemically defined serum- and feeder-free culture conditions. This microfluidic platform,combined with image cytometry,enables the systematic analysis of multiple simultaneously detected marker expression in individual cells,for screening of various chemically defined media across hPSC lines,and the study of phenotypic responses.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Philonenko ES et al. (JAN 2011)
International review of cell and molecular biology 292 153--96
Current progress and potential practical application for human pluripotent stem cells.
Pluripotent stem cells are able to give rise to all cell types of the organism. There are two sources for human pluripotent stem cells: embryonic stem cells (ESCs) derived from surplus blastocysts created for in vitro fertilization and induced pluripotent stem cells (iPSCs) generated by reprogramming of somatic cells. ESCs have been an area of intense research during the past decade,and two clinical trials have been recently approved. iPSCs were created only recently,and most of the research has been focused on the iPSC generation protocols and investigation of mechanisms of direct reprogramming. The iPSC technology makes possible to derive pluripotent stem cells from any patient. However,there are a number of hurdles to be overcome before iPSCs will find a niche in practice. In this review,we discuss differences and similarities of the two pluripotent cell types and assess prospects for application of these cells in biomedicine.
View Publication
Nejadnik H et al. (APR 2015)
Stem Cell Reviews and Reports 11 2 242--253
Improved Approach for Chondrogenic Differentiation of Human Induced Pluripotent Stem Cells
Human induced pluripotent stem cells (hiPSCs) have demonstrated great potential for hyaline cartilage regeneration. However,current approaches for chondrogenic differentiation of hiPSCs are complicated and inefficient primarily due to intermediate embryoid body formation,which is required to generate endodermal,ectodermal,and mesodermal cell lineages. We report a new,straightforward and highly efficient approach for chondrogenic differentiation of hiPSCs,which avoids embryoid body formation. We differentiated hiPSCs directly into mesenchymal stem /stromal cells (MSC) and chondrocytes. hiPSC-MSC-derived chondrocytes showed significantly increased Col2A1,GAG,and SOX9 gene expression compared to hiPSC-MSCs. Following transplantation of hiPSC-MSC and hiPSC-MSC-derived chondrocytes into osteochondral defects of arthritic joints of athymic rats,magnetic resonance imaging studies showed gradual engraftment,and histological correlations demonstrated hyaline cartilage matrix production. Results present an efficient and clinically translatable approach for cartilage tissue regeneration via patient-derived hiPSCs,which could improve cartilage regeneration outcomes in arthritic joints.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Aikawa N et al. ( 2015)
Biological & pharmaceutical bulletin 38 7 1070--1075
A Simple Protocol for the Myocardial Differentiation of Human iPS Cells.
We have developed a simple protocol for inducing the myocardial differentiation of human induced pluripotent stem (iPS) cells. Human iPS cell-derived embryonic bodies (EBs) were treated with a combination of activin-A,bone morphogenetic protein-4 and wnt-3a for one day in serum-free suspension culture,and were subsequently treated with noggin for three days. Thereafter,the EBs were subjected to adherent culture in media with 5% serum. All EBs were differentiated into spontaneously beating EBs,which were identified by the presence of striated muscles in transmission electron microscopy and the expression of the specific cardiomyocyte markers,NKX2-5 and TNNT2. The beating rate of the beating EBs was decreased by treatment with a rapidly activating delayed rectifier potassium current (Ikr) channel blocker,E-4031,an Ikr trafficking inhibitor,pentamidin,and a slowly activating delayed rectifier potassium current (Iks) channel blocker,chromanol 293B,and was increased by treatment with a beta-receptor agonist,isoproterenol. At a low concentration,verapamil,a calcium channel blocker,increased the beating rate of the beating EBs,while a high concentration decreased this rate. These findings suggest that the spontaneously beating EBs were myocardial cell clusters. This simple protocol for myocardial differentiation would be useful in providing a sufficient number of the beating myocardial cell clusters for studies requiring human myocardium.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
07923
36254
05893
85850
85857
85870
85875
27845
27945
27840
27865
27940
27965
产品名:
Dispase (1 U/mL)
DMEM/F-12 with 15 mM HEPES
AggreWell™ EB形成培养基
mTeSR™1
mTeSR™1
文献
Burgos-Ojeda D et al. (JUN 2013)
Cancer research 73 12 3555--3565
A novel model for evaluating therapies targeting human tumor vasculature and human cancer stem-like cells.
Human tumor vessels express tumor vascular markers (TVM),proteins that are not expressed in normal blood vessels. Antibodies targeting TVMs could act as potent therapeutics. Unfortunately,preclinical in vivo studies testing anti-human TVM therapies have been difficult to do due to a lack of in vivo models with confirmed expression of human TVMs. We therefore evaluated TVM expression in a human embryonic stem cell-derived teratoma (hESCT) tumor model previously shown to have human vessels. We now report that in the presence of tumor cells,hESCT tumor vessels express human TVMs. The addition of mouse embryonic fibroblasts and human tumor endothelial cells significantly increases the number of human tumor vessels. TVM induction is mostly tumor-type-specific with ovarian cancer cells inducing primarily ovarian TVMs,whereas breast cancer cells induce breast cancer specific TVMs. We show the use of this model to test an anti-human specific TVM immunotherapeutics; anti-human Thy1 TVM immunotherapy results in central tumor necrosis and a three-fold reduction in human tumor vascular density. Finally,we tested the ability of the hESCT model,with human tumor vascular niche,to enhance the engraftment rate of primary human ovarian cancer stem-like cells (CSC). ALDH(+) CSC from patients (n = 6) engrafted in hESCT within 4 to 12 weeks whereas none engrafted in the flank. ALDH(-) ovarian cancer cells showed no engraftment in the hESCT or flank (n = 3). Thus,this model represents a useful tool to test anti-human TVM therapy and evaluate in vivo human CSC tumor biology.
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™工具
ALDEFLUOR™DEAB试剂
文献
Calado RT et al. (SEP 2009)
Blood 114 11 2236--43
Sex hormones, acting on the TERT gene, increase telomerase activity in human primary hematopoietic cells.
Androgens have been used in the treatment of bone marrow failure syndromes without a clear understanding of their mechanism of action. Blood counts of patients with dyskeratosis congenita or aplastic anemia with mutations in telomerase genes can improve with androgen therapy. Here we observed that exposure in vitro of normal peripheral blood lymphocytes and human bone marrow-derived CD34(+) cells to androgens increased telomerase activity,coincident with higher TERT mRNA levels. Cells from patients who were heterozygous for telomerase mutations had low baseline telomerase activity,which was restored to normal levels by exposure to androgens. Estradiol had an effect similar to androgens on TERT gene expression and telomerase enzymatic activity. Tamoxifen abolished the effects of both estradiol and androgens on telomerase function,and letrozole,an aromatase inhibitor,blocked androgen effects on telomerase activity. Conversely,flutamide,an androgen receptor antagonist,did not affect androgen stimulation of telomerase. Down-regulation by siRNA of estrogen receptor-alpha (ER alpha),but not ER beta,inhibited estrogen-stimulated telomerase function. Our results provide a mechanism for androgen therapy in bone marrow failure: androgens appear to regulate telomerase expression and activity mainly by aromatization and through ER alpha. These findings have potential implications for the choice of current androgenic compounds and the development of future agents for clinical use.
View Publication
Extracellular nucleotides are potent stimulators of human hematopoietic stem cells in vitro and in vivo.
Although extracellular nucleotides support a wide range of biologic responses of mature blood cells,little is known about their effect on blood cell progenitor cells. In this study,we assessed whether receptors for extracellular nucleotides (P2 receptors [P2Rs]) are expressed on human hematopoietic stem cells (HSCs),and whether activation by their natural ligands,adenosine triphosphate (ATP) and uridine triphosphate (UTP),induces HSC proliferation in vitro and in vivo. Our results demonstrated that CD34(+) HSCs express functional P2XRs and P2YRs of several subtypes. Furthermore,stimulation of CD34(+) cells with extracellular nucleotides caused a fast release of Ca(2+) from intracellular stores and an increase in ion fluxes across the plasma membrane. Functionally,ATP and,to a higher extent,UTP acted as potent early acting growth factors for HSCs,in vitro,because they strongly enhanced the stimulatory activity of several cytokines on clonogenic CD34(+) and lineage-negative CD34(-) progenitors and expanded more primitive CD34(+)-derived long-term culture-initiating cells. Furthermore,xenogenic transplantation studies showed that short-term preincubation with UTP significantly expanded the number of marrow-repopulating HSCs in nonobese diabetic/severe combined immunodeficiency mice. Our data suggest that extracellular nucleotides may provide a novel and powerful tool to modulate HSC functions.
View Publication
产品类型:
产品号#:
04236
09500
产品名:
MethoCult™SF H4236
BIT 9500血清替代物
文献
Hoebeke I et al. (APR 2006)
Blood 107 7 2879--81
Overexpression of HES-1 is not sufficient to impose T-cell differentiation on human hematopoietic stem cells.
By retroviral overexpression of the Notch-1 intracellular domain (ICN) in human CD34+ hematopoietic stem cells (HSCs),we have shown previously that Notch-1 signaling promotes the T-cell fate and inhibits the monocyte and B-cell fate in several in vitro and in vivo differentiation assays. Here,we investigated whether the effects of constitutively active Notch-1 can be mimicked by overexpression of its downstream target gene HES1. Upon HES-1 retroviral transduction,human CD34+ stem cells had a different outcome in the differentiation assays as compared to ICN-transduced cells. Although HES-1 induced a partial block in B-cell development,it did not inhibit monocyte development and did not promote T/NK-cell-lineage differentiation. On the contrary,a higher percentage of HES-1-transduced stem cells remained CD34+. These experiments indicate that HES-1 alone is not able to substitute for Notch-1 signaling to induce T-cell differentiation of human CD34+ hematopoietic stem cells.
View Publication
产品类型:
产品号#:
产品名:
文献
Lacout C et al. (SEP 2006)
Blood 108 5 1652--60
JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis.
A JAK2(V617F) mutation is frequently found in several BCR/ABL-negative myeloproliferative disorders. To address the contribution of this mutant to the pathogenesis of these different myeloproliferative disorders,we used an adoptive transfer of marrow cells transduced with a retrovirus expressing JAK2(V617F) in recipient irradiated mice. Hosts were analyzed during the 6 months after transplantation. For a period of 3 months,mice developed polycythemia,macrocytosis and usually peripheral blood granulocytosis. Transient thrombocytosis was only observed in a low-expresser group. All mice displayed trilineage hyperplasia in marrow and spleen along with an amplification of myeloid and erythroid progenitor cells and a formation of endogenous erythroid colonies. After 3 to 4 months,polycythemia regressed,abnormally shaped red blood cells and platelets were seen in circulation,and a deposition of reticulin fibers was observed in marrow and spleen. Development of fibrosis was associated with anemia,thrombocytopenia,high neutrophilia,and massive splenomegaly. These features mimic human polycythemia vera and its evolution toward myelofibrosis. This work demonstrates that JAK2(V617F) is sufficient for polycythemia and fibrosis development and offers an in vivo model to assess novel therapeutic approaches for JAK2(V617F)-positive pathologies. Questions remain regarding the exact contribution of JAK2(V617F) in other myeloproliferative disorders.
View Publication
产品类型:
产品号#:
03234
产品名:
MethoCult™M3234
文献
Zhao H et al. (JAN 2009)
Blood 113 3 505--16
The c-myb proto-oncogene and microRNA-15a comprise an active autoregulatory feedback loop in human hematopoietic cells.
The c-myb proto-oncogene encodes an obligate hematopoietic cell transcription factor important for lineage commitment,proliferation,and differentiation. Given its critical functions,c-Myb regulatory factors are of great interest but remain incompletely defined. Herein we show that c-Myb expression is subject to posttranscriptional regulation by microRNA (miRNA)-15a. Using a luciferase reporter assay,we found that miR-15a directly binds the 3'-UTR of c-myb mRNA. By transfecting K562 myeloid leukemia cells with a miR-15a mimic,functionality of binding was shown. The mimic decreased c-Myb expression,and blocked the cells in the G(1) phase of cell cycle. Exogenous expression of c-myb mRNA lacking the 3'-UTR partially rescued the miR-15a induced cell-cycle block. Of interest,the miR-15a promoter contained several potential c-Myb protein binding sites. Occupancy of one canonical c-Myb binding site was demonstrated by chromatin immunoprecipitation analysis and shown to be required for miR-15a expression in K562 cells. Finally,in studies using normal human CD34(+) cells,we showed that c-Myb and miR-15a expression were inversely correlated in cells undergoing erythroid differentiation,and that overexpression of miR-15a blocked both erythroid and myeloid colony formation in vitro. In aggregate,these findings suggest the presence of a c-Myb-miR-15a autoregulatory feedback loop of potential importance in human hematopoiesis.
View Publication