Elliott DA et al. (DEC 2011)
Nature methods 8 12 1037--1040
NKX2-5(eGFP/w) hESCs for isolation of human cardiac progenitors and cardiomyocytes.
NKX2-5 is expressed in the heart throughout life. We targeted eGFP sequences to the NKX2-5 locus of human embryonic stem cells (hESCs); NKX2-5(eGFP/w) hESCs facilitate quantification of cardiac differentiation,purification of hESC-derived committed cardiac progenitor cells (hESC-CPCs) and cardiomyocytes (hESC-CMs) and the standardization of differentiation protocols. We used NKX2-5 eGFP(+) cells to identify VCAM1 and SIRPA as cell-surface markers expressed in cardiac lineages.
View Publication
Meta-analysis of differentiating mouse embryonic stem cell gene expression kinetics reveals early change of a small gene set.
Stem cell differentiation involves critical changes in gene expression. Identification of these should provide endpoints useful for optimizing stem cell propagation as well as potential clues about mechanisms governing stem cell maintenance. Here we describe the results of a new meta-analysis methodology applied to multiple gene expression datasets from three mouse embryonic stem cell (ESC) lines obtained at specific time points during the course of their differentiation into various lineages. We developed methods to identify genes with expression changes that correlated with the altered frequency of functionally defined,undifferentiated ESC in culture. In each dataset,we computed a novel statistical confidence measure for every gene which captured the certainty that a particular gene exhibited an expression pattern of interest within that dataset. This permitted a joint analysis of the datasets,despite the different experimental designs. Using a ranking scheme that favored genes exhibiting patterns of interest,we focused on the top 88 genes whose expression was consistently changed when ESC were induced to differentiate. Seven of these (103728at,8430410A17Rik,Klf2,Nr0b1,Sox2,Tcl1,and Zfp42) showed a rapid decrease in expression concurrent with a decrease in frequency of undifferentiated cells and remained predictive when evaluated in additional maintenance and differentiating protocols. Through a novel meta-analysis,this study identifies a small set of genes whose expression is useful for identifying changes in stem cell frequencies in cultures of mouse ESC. The methods and findings have broader applicability to understanding the regulation of self-renewal of other stem cell types.
View Publication
产品类型:
产品号#:
06902
06952
00321
00322
00323
00324
00325
产品名:
挂图
Neural Stem Cells
Overview of the types of NSCs and their potential use as therapeutic agents for disease
挂图
Regulatory T Cells
Overview of the development, phenotype and functions of regulatory T cells
Lannutti BJ et al. (FEB 2009)
Blood 113 8 1778--85
Incomplete restoration of Mpl expression in the mpl-/- mouse produces partial correction of the stem cell-repopulating defect and paradoxical thrombocytosis.
Expression of Mpl is restricted to hematopoietic cells in the megakaryocyte lineage and to undifferentiated progenitors,where it initiates critical cell survival and proliferation signals after stimulation by its ligand,thrombopoietin (TPO). As a result,a deficiency in Mpl function in patients with congenital amegakaryocytic thrombocytopenia (CAMT) and in mpl(-/-) mice produces profound thrombocytopenia and a severe stem cell-repopulating defect. Gene therapy has the potential to correct the hematopoietic defects of CAMT by ectopic gene expression that restores normal Mpl receptor activity. We rescued the mpl(-/-) mouse with a transgenic vector expressing mpl from the promoter elements of the 2-kb region of DNA just proximal to the natural gene start site. Transgene rescued mice exhibit thrombocytosis but only partial correction of the stem cell defect. Furthermore,they show very low-level expression of Mpl on platelets and megakaryocytes,and the transgene-rescued megakaryocytes exhibit diminished TPO-dependent kinase phosphorylation and reduced platelet production in bone marrow chimeras. Thrombocytosis is an unexpected consequence of reduced Mpl expression and activity. However,impaired TPO homeostasis in the transgene-rescued mice produces elevated plasma TPO levels,which serves as an unchecked stimulus to drive the observed excessive megakaryocytopoiesis.
View Publication