Linta L et al. (APR 2012)
Stem cells and development 21 6 965--976
Rat Embryonic Fibroblasts Improve Reprogramming of Human Keratinocytes into Induced Pluripotent Stem Cells
Patient-specific human induced pluripotent stem (hiPS) cells not only provide a promising tool for cellular disease models in general,but also open up the opportunity to establish cell-type-specific systems for personalized medicine. One of the crucial prerequisites for these strategies,however,is a fast and efficient reprogramming strategy from easy accessible somatic cell populations. Keratinocytes from plucked human hair had been introduced as a superior cell source for reprogramming purposes compared with the widely used skin fibroblasts. The starting cell population is,however,limited and thereby further optimization in terms of time,efficiency,and quality is inevitable. Here we show that rat embryonic fibroblasts (REFs) should replace mouse embryonic fibroblasts as feeder cells in the reprogramming process. REFs enable a significantly more efficient reprogramming procedure as shown by colony number and total amount of SSEA4-positive cells. We successfully produced keratinocyte-derived hiPS (k-hiPS) cells from various donors. The arising k-hiPS cells display the hallmarks of pluripotency such as expression of stem cell markers and differentiation into all 3 germ layers. The increased reprogramming efficiency using REFs as a feeder layer occurred independent of the proliferation rate in the parental keratinocytes and acts,at least in part,in a non-cell autonomous way by secreting factors known to facilitate pluripotency such as Tgfb1,Inhba and Grem1. Hence,we provide an easy to use and highly efficient reprogramming system that could be very useful for a broad application to generate human iPS cells.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Zeng J et al. (MAY 2012)
The Journal of Immunology 188 9 4297--4304
Enhancing Immunostimulatory Function of Human Embryonic Stem Cell-Derived Dendritic Cells by CD1d Overexpression
Human embryonic stem cell-derived dendritic cells (hESC-DCs) may potentially provide a platform to generate off-the-shelf" therapeutic cancer vaccines. To apply hESC-DCs for cancer immunotherapy in a semiallogeneic setting�
View Publication
产品类型:
产品号#:
09600
09650
70024
70024.1
85850
85857
70025
70025.1
70025.2
70025.3
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
冻存的人外周血Pan T细胞
冻存的人外周血Pan T细胞
mTeSR™1
mTeSR™1
冻存的人外周血单个核细胞
冻存的人外周血单个核细胞
冻存的人外周血单个核细胞
冻存的人外周血单个核细胞
文献
Zielinski CE et al. (APR 2012)
Nature 484 7395 514--8
Pathogen-induced human TH17 cells produce IFN-γ or IL-10 and are regulated by IL-1β.
IL-17-producing CD4+ T helper cells (TH17) have been extensively investigated in mouse models of autoimmunity. However,the requirements for differentiation and the properties of pathogen-induced human TH17 cells remain poorly defined. Using an approach that combines the in vitro priming of naive T cells with the ex vivo analysis of memory T cells,we describe here two types of human TH17 cells with distinct effector function and differentiation requirements. Candida albicans-specific TH17 cells produced IL-17 and IFN-γ,but no IL-10,whereas Staphylococcus aureus-specific TH17 cells produced IL-17 and could produce IL-10 upon restimulation. IL-6,IL-23 and IL-1β contributed to TH17 differentiation induced by both pathogens,but IL-1β was essential in C. albicans-induced TH17 differentiation to counteract the inhibitory activity of IL-12 and to prime IL-17/IFN-γ double-producing cells. In addition,IL-1β inhibited IL-10 production in differentiating and in memory TH17 cells,whereas blockade of IL-1β in vivo led to increased IL-10 production by memory TH17 cells. We also show that,after restimulation,TH17 cells transiently downregulated IL-17 production through a mechanism that involved IL-2-induced activation of STAT5 and decreased expression of ROR-γt. Taken together these findings demonstrate that by eliciting different cytokines C. albicans and S. aureus prime TH17 cells that produce either IFN-γ or IL-10,and identify IL-1β and IL-2 as pro- and anti-inflammatory regulators of TH17 cells both at priming and in the effector phase.
View Publication
产品类型:
产品号#:
73852
产品名:
STAT5抑制剂
文献
Ruiz S et al. (NOV 2012)
Journal of Biological Chemistry 287 48 40767--40778
Generation of a drug-inducible reporter system to study cell reprogramming in human cells
BACKGROUND Strategies on the basis of doxycycline-inducible lentiviruses in mouse cells allowed the examination of mechanisms governing somatic cell reprogramming. RESULTS Using a doxycycline-inducible human reprogramming system,we identified unreported miRs enhancing reprogramming efficiency. CONCLUSION We generated a drug-inducible human reprogramming reporter system as an invaluable tool for genetic or chemical screenings. SIGNIFICANCE These cellular systems provide a tool to enable the advancement of reprogramming technologies in human cells. Reprogramming of somatic cells into induced pluripotent stem cells is achieved by the expression of defined transcription factors. In the last few years,reprogramming strategies on the basis of doxycycline-inducible lentiviruses in mouse cells became highly powerful for screening purposes when the expression of a GFP gene,driven by the reactivation of endogenous stem cell specific promoters,was used as a reprogramming reporter signal. However,similar reporter systems in human cells have not been generated. Here,we describe the derivation of drug-inducible human fibroblast-like cell lines that express different subsets of reprogramming factors containing a GFP gene under the expression of the endogenous OCT4 promoter. These cell lines can be used to screen functional substitutes for reprogramming factors or modifiers of reprogramming efficiency. As a proof of principle of this system,we performed a screening of a library of pluripotent-enriched microRNAs and identified hsa-miR-519a as a novel inducer of reprogramming efficiency.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Nä et al. (NOV 2013)
PLoS ONE 8 11 e78847
Continuous Hypoxic Culturing of Human Embryonic Stem Cells Enhances SSEA-3 and MYC Levels
Low oxygen tension (hypoxia) contributes critically to pluripotency of human embryonic stem cells (hESCs) by preventing spontaneous differentiation and supporting self-renewal. However,it is not well understood how hESCs respond to reduced oxygen availability and what are the molecular mechanisms maintaining pluripotency in these conditions. In this study we characterized the transcriptional and molecular responses of three hESC lines (H9,HS401 and HS360) on short (2 hours),intermediate (24 hours) and prolonged (7 days) exposure to low oxygen conditions (4% O2). In response to prolonged hypoxia the expression of pluripotency surface marker SSEA-3 was increased. Furthermore,the genome wide gene-expression analysis revealed that a substantial proportion (12%) of all hypoxia-regulated genes in hESCs,were directly linked to the mechanisms controlling pluripotency or differentiation. Moreover,transcription of MYC oncogene was induced in response to continuous hypoxia. At the protein level MYC was stabilized through phosphorylation already in response to a short hypoxic exposure. Total MYC protein levels remained elevated throughout all the time points studied. Further,MYC protein expression in hypoxia was affected by silencing HIF2α,but not HIF1α. Since MYC has a crucial role in regulating pluripotency we propose that induction of sustained MYC expression in hypoxia contributes to activation of transcriptional programs critical for hESC self-renewal and maintenance of enhanced pluripotent state.
View Publication
产品类型:
产品号#:
36254
85850
85857
产品名:
DMEM/F-12 with 15 mM HEPES
mTeSR™1
mTeSR™1
文献
Warmflash A et al. (AUG 2014)
Nature methods 11 8 847--54
A method to recapitulate early embryonic spatial patterning in human embryonic stem cells.
Embryos allocate cells to the three germ layers in a spatially ordered sequence. Human embryonic stem cells (hESCs) can generate the three germ layers in culture; however,differentiation is typically heterogeneous and spatially disordered. We show that geometric confinement is sufficient to trigger self-organized patterning in hESCs. In response to BMP4,colonies reproducibly differentiated to an outer trophectoderm-like ring,an inner ectodermal circle and a ring of mesendoderm expressing primitive-streak markers in between. Fates were defined relative to the boundary with a fixed length scale: small colonies corresponded to the outer layers of larger ones. Inhibitory signals limited the range of BMP4 signaling to the colony edge and induced a gradient of Activin-Nodal signaling that patterned mesendodermal fates. These results demonstrate that the intrinsic tendency of stem cells to make patterns can be harnessed by controlling colony geometries and provide a quantitative assay for studying paracrine signaling in early development.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Du L et al. (MAY 2016)
Journal of applied toxicology : JAT 36 5 659--668
BDE-209 inhibits pluripotent genes expression and induces apoptosis in human embryonic stem cells.
Decabromodiphenyl ether (BDE-209) has been detected in human serum,semen,placenta,cord blood and milk worldwide. However,little is known regarding the potential effects on the early human embryonic development of BDE-209. In this study,human embryonic stem cell lines FY-hES-10 and FY-hES-26 were used to evaluate the potential effects and explore the toxification mechanisms using low-level BDE-209 exposure. Our data showed that BDE-209 exposure (1,10 and 100 nM) reduced the expression of pluripotent genes such as OCT4,SOX2 and NANOG and induced human embryonic stem cells (hESCs) apoptosis. The downregulation of BIRC5/BCL2 and upregulation of BAX were related to apoptosis of hESCs induced by BDE-209 exposure. A mechanism study showed that OCT4 down-regulation accompanied by OCT4 promoter hypermethylation and increasing miR-145/miR-335 levels,OCT4 inhibitors. Moreover,BDE-209 could increase the generation of intracellular reactive oxygen species (ROS) and decrease SOD2 expression. The ROS increase and OCT4 downregulation after BDE-209 exposure could be reversed partly by antioxidant N-acetylcysteine supplement. These findings showed that BDE-209 exposure could decrease pluripotent genes expression via epigenetic regulation and induce apoptosis through ROS generation in human embryonic stem cells in vitro.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Vegas AJ et al. (MAR 2016)
Nature medicine 22 3 306--311
Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice.
The transplantation of glucose-responsive,insulin-producing cells offers the potential for restoring glycemic control in individuals with diabetes. Pancreas transplantation and the infusion of cadaveric islets are currently implemented clinically,but these approaches are limited by the adverse effects of immunosuppressive therapy over the lifetime of the recipient and the limited supply of donor tissue. The latter concern may be addressed by recently described glucose-responsive mature beta cells that are derived from human embryonic stem cells (referred to as SC-$\$),which may represent an unlimited source of human cells for pancreas replacement therapy. Strategies to address the immunosuppression concerns include immunoisolation of insulin-producing cells with porous biomaterials that function as an immune barrier. However,clinical implementation has been challenging because of host immune responses to the implant materials. Here we report the first long-term glycemic correction of a diabetic,immunocompetent animal model using human SC-$\$ SC-$\$ were encapsulated with alginate derivatives capable of mitigating foreign-body responses in vivo and implanted into the intraperitoneal space of C57BL/6J mice treated with streptozotocin,which is an animal model for chemically induced type 1 diabetes. These implants induced glycemic correction without any immunosuppression until their removal at 174 d after implantation. Human C-peptide concentrations and in vivo glucose responsiveness demonstrated therapeutically relevant glycemic control. Implants retrieved after 174 d contained viable insulin-producing cells.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Yabe S et al. (MAY 2016)
Proceedings of the National Academy of Sciences of the United States of America 113 19 E2598----607
Comparison of syncytiotrophoblast generated from human embryonic stem cells and from term placentas.
Human embryonic stem cells (ESCs) readily commit to the trophoblast lineage after exposure to bone morphogenetic protein-4 (BMP-4) and two small compounds,an activin A signaling inhibitor and a FGF2 signaling inhibitor (BMP4/A83-01/PD173074; BAP treatment). During differentiation,areas emerge within the colonies with the biochemical and morphological features of syncytiotrophoblast (STB). Relatively pure fractions of mononucleated cytotrophoblast (CTB) and larger syncytial sheets displaying the expected markers of STB can be obtained by differential filtration of dispersed colonies through nylon strainers. RNA-seq analysis of these fractions has allowed them to be compared with cytotrophoblasts isolated from term placentas before and after such cells had formed syncytia. Although it is clear from extensive gene marker analysis that both ESC- and placenta-derived syncytial cells are trophoblast,each with the potential to transport a wide range of solutes and synthesize placental hormones,their transcriptome profiles are sufficiently dissimilar to suggest that the two cell types have distinct pedigrees and represent functionally different kinds of STB. We propose that the STB generated from human ESCs represents the primitive syncytium encountered in early pregnancy soon after the human trophoblast invades into the uterine wall.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Singh AM et al. (APR 2016)
Methods in molecular biology (Clifton,N.J.)
Decoding the Epigenetic Heterogeneity of Human Pluripotent Stem Cells with Seamless Gene Editing.
Pluripotent stem cells exhibit cell cycle-regulated heterogeneity for trimethylation of histone-3 on lysine-4 (H3K4me3) on developmental gene promoters containing bivalent epigenetic domains. The heterogeneity of H3K4me3 can be attributed to Cyclin-dependent kinase-2 (CDK2) phosphorylation and activation of the histone methyltransferase,MLL2 (KMT2B),during late-G1. The deposition of H3K4me3 on developmental promoters in late-G1 establishes a permissive chromatin architecture that enables signaling cues to promote differentiation from the G1 phase. These data suggest that the inhibition of MLL2 phosphorylation and activation will prevent the initiation of differentiation. Here,we describe a method to seamlessly modify a putative CDK2 phosphorylation site on MLL2 to restrict its phosphorylation and activation. Specifically,by utilizing dimeric CRISPR RNA-guided nucleases,RFNs (commercially known as the NextGEN™ CRISPR),in combination with an excision-only piggyBac™ transposase,we demonstrate how to generate a point mutation of threonine-542,a predicted site to prevent MLL2 activation. This gene editing method enables the use of both positive and negative selection,and allows for subsequent removal of the donor cassette without leaving behind any unwanted DNA sequences or modifications. This seamless donor-excision" approach provides clear advantages over using single stranded oligo-deoxynucleotides (ssODN) as donors to create point mutations�
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Borowiak M et al. (APR 2009)
Cell stem cell 4 4 348--58
Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells.
An essential step for therapeutic and research applications of stem cells is the ability to differentiate them into specific cell types. Endodermal cell derivatives,including lung,liver,and pancreas,are of interest for regenerative medicine,but efforts to produce these cells have been met with only modest success. In a screen of 4000 compounds,two cell-permeable small molecules were indentified that direct differentiation of ESCs into the endodermal lineage. These compounds induce nearly 80% of ESCs to form definitive endoderm,a higher efficiency than that achieved by Activin A or Nodal,commonly used protein inducers of endoderm. The chemically induced endoderm expresses multiple endodermal markers,can participate in normal development when injected into developing embryos,and can form pancreatic progenitors. The application of small molecules to differentiate mouse and human ESCs into endoderm represents a step toward achieving a reproducible and efficient production of desired ESC derivatives.
View Publication