Hui Z et al. (OCT 2009)
Stem Cells 27 10 2435--2445
Lack of ABCG2 expression and side population properties in human pluripotent stem cells
The multidrug transporter ABCG2 in cell membranes enables various stem cells and cancer cells to efflux chemicals,including the fluorescent dye Hoechst 33342. The Hoechst(-) cells can be sorted out as a side population with stem cell properties. Abcg2 expression in mouse embryonic stem cells (ESCs) reduces accumulation of DNA-damaging metabolites in the cells,which helps prevent cell differentiation. Surprisingly,we found that human ESCs do not express ABCG2 and cannot efflux Hoechst. In contrast,trophoblasts and neural epithelial cells derived from human ESCs are ABCG2(+) and Hoechst(-). Human ESCs ectopically expressing ABCG2 become Hoechst(-),more tolerant of toxicity of mitoxantrone,a substrate of ABCG2,and more capable of self-renewal in basic fibroblast growth factor (bFGF)-free condition than control cells. However,Hoechst(low) cells sorted as a small subpopulation from human ESCs express lower levels of pluripotency markers than the Hoechst(high) cells. Similar results were observed with human induced pluripotent stem cells. Conversely,mouse ESCs are Abcg2(+) and mouse trophoblasts,Abcg2(-). Thus,absence of ABCG2 is a novel feature of human pluripotent stem cells,which distinguishes them from many other stem cells including mouse ESCs,and may be a reason why they are sensitive to suboptimal culture conditions.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Vaziri H et al. (MAY 2010)
Regenerative medicine 5 3 345--363
Spontaneous reversal of the developmental aging of normal human cells following transcriptional reprogramming.
AIM: To determine whether transcriptional reprogramming is capable of reversing the developmental aging of normal human somatic cells to an embryonic state. MATERIALS & METHODS: An isogenic system was utilized to facilitate an accurate assessment of the reprogramming of telomere restriction fragment (TRF) length of aged differentiated cells to that of the human embryonic stem (hES) cell line from which they were originally derived. An hES-derived mortal clonal cell strain EN13 was reprogrammed by SOX2,OCT4 and KLF4. The six resulting induced pluripotent stem (iPS) cell lines were surveyed for telomere length,telomerase activity and telomere-related gene expression. In addition,we measured all these parameters in widely-used hES and iPS cell lines and compared the results to those obtained in the six new isogenic iPS cell lines. RESULTS: We observed variable but relatively long TRF lengths in three widely studied hES cell lines (16.09-21.1 kb) but markedly shorter TRF lengths (6.4-12.6 kb) in five similarly widely studied iPS cell lines. Transcriptome analysis comparing these hES and iPS cell lines showed modest variation in a small subset of genes implicated in telomere length regulation. However,iPS cell lines consistently showed reduced levels of telomerase activity compared with hES cell lines. In order to verify these results in an isogenic background,we generated six iPS cell clones from the hES-derived cell line EN13. These iPS cell clones showed initial telomere lengths comparable to the parental EN13 cells,had telomerase activity,expressed embryonic stem cell markers and had a telomere-related transcriptome similar to hES cells. Subsequent culture of five out of six lines generally showed telomere shortening to lengths similar to that observed in the widely distributed iPS lines. However,the clone EH3,with relatively high levels of telomerase activity,progressively increased TRF length over 60 days of serial culture back to that of the parental hES cell line. CONCLUSION: Prematurely aged (shortened) telomeres appears to be a common feature of iPS cells created by current pluripotency protocols. However,the spontaneous appearance of lines that express sufficient telomerase activity to extend telomere length may allow the reversal of developmental aging in human cells for use in regenerative medicine.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Male V et al. (OCT 2010)
Journal of immunology (Baltimore,Md. : 1950) 185 7 3913--8
Immature NK cells, capable of producing IL-22, are present in human uterine mucosa.
NK cells are the dominant population of immune cells in the endometrium in the secretory phase of the menstrual cycle and in the decidua in early pregnancy. The possibility that this is a site of NK cell development is of particular interest because of the cyclical death and regeneration of the NK population during the menstrual cycle. To investigate this,we searched for NK developmental stages 1-4,based on expression of CD34,CD117,and CD94. In this study,we report that a heterogeneous population of stage 3 NK precursor (CD34(-)CD117(+)CD94(-)) and mature stage 4 NK (CD34(-)CD117(-/+)CD94(+)) cells,but not multipotent stages 1 and 2 (CD34(+)),are present in the uterine mucosa. Cells within the uterine stage 3 population are able to give rise to mature stage 4-like cells in vitro but also produce IL-22 and express RORC and LTA. We also found stage 3 cells with NK progenitor potential in peripheral blood. We propose that stage 3 cells are recruited from the blood to the uterus and mature in the uterine microenvironment to become distinctive uterine NK cells. IL-22 producers in this population might have a physiological role in this specialist mucosa dedicated to reproduction.
View Publication
产品类型:
产品号#:
产品名:
文献
Sokolov MV et al. (JAN 2012)
PLoS ONE 7 2 e31028
Unraveling the global microRNAome responses to ionizing radiation in human embryonic stem cells
MicroRNAs (miRNA) comprise a group of short ribonucleic acid molecules implicated in regulation of key biological processes and functions at the post-transcriptional level. Ionizing radiation (IR) causes DNA damage and generally triggers cellular stress response. However,the role of miRNAs in IR-induced response in human embryonic stem cells (hESC) has not been defined yet. Here,by using system biology approaches,we show for the first time,that miRNAome undergoes global alterations in hESC (H1 and H9 lines) after IR. Interrogation of expression levels of 1,090 miRNA species in irradiated hESC showed statistically significant changes in 54 genes following 1 Gy of X-ray exposures; global miRNAome alterations were found to be highly temporally and cell line--dependent in hESC. Time-course studies showed that the 16 hr miRNAome radiation response of hESC is much more robust compared to 2 hr-response signature (only eight genes),and may be involved in regulating the cell cycle. Quantitative real-time PCR performed on some miRNA species confirms the robustness of our miRNA microarray platform. Positive regulation of differentiation-,cell cycle-,ion transport- and endomembrane system-related processes were predicted to be negatively affected by miRNAome changes in irradiated hESC. Our findings reveal a fundamental role of miRNAome in modulating the radiation response,and identify novel molecular targets of radiation in hESC.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Amita M et al. (MAR 2013)
Proceedings of the National Academy of Sciences of the United States of America 110 13 E1212--E1221
Complete and unidirectional conversion of human embryonic stem cells to trophoblast by BMP4
Human ES cells (hESC) exposed to bone morphogenic protein 4 (BMP4) in the absence of FGF2 have become widely used for studying trophoblast development,but the soundness of this model has been challenged by others,who concluded that differentiation was primarily toward mesoderm rather than trophoblast. Here we confirm that hESC grown under the standard conditions on a medium conditioned by mouse embryonic fibroblasts in the presence of BMP4 and absence of FGF2 on a Matrigel substratum rapidly convert to an epithelium that is largely KRT7+ within 48 h,with minimal expression of mesoderm markers,including T (Brachyury). Instead,they begin to express a series of trophoblast markers,including HLA-G,demonstrate invasive properties that are independent of the continued presence of BMP4 in the medium,and,over time,produce extensive amounts of human chorionic gonadotropin,progesterone,placental growth factor,and placental lactogen. This process of differentiation is not dependent on conditioning of the medium by mouse embryonic fibroblasts and is accelerated in the presence of inhibitors of Activin and FGF2 signaling,which at day 2 provide colonies that are entirely KRT7+ and in which the majority of cells are transiently CDX2+. Colonies grown on two chemically defined media,including the one in which BMP4 was reported to drive mesoderm formation,also differentiate at least partially to trophoblast in response to BMP4. The experiments demonstrate that the in vitro BMP4/hESC model is valid for studying the emergence and differentiation of trophoblasts.
View Publication
产品类型:
产品号#:
07923
85850
85857
产品名:
Dispase (1 U/mL)
mTeSR™1
mTeSR™1
文献
Narla RK et al. ( 1998)
Clinical cancer research : an official journal of the American Association for Cancer Research 4 6 1405--1414
4-(3'-Bromo-4'hydroxylphenyl)-amino-6,7-dimethoxyquinazoline: a novel quinazoline derivative with potent cytotoxic activity against human glioblastoma cells.
The novel quinazoline derivative 4-(3'-bromo-4'-hydroxylphenyl)-amino-6,7-dimethoxyquinazoline (WHI-P154) exhibited significant cytotoxicity against U373 and U87 human glioblastoma cell lines,causing apoptotic cell death at micromolar concentrations. The in vitro antiglioblastoma activity of WHI-P154 was amplified textgreater 200-fold and rendered selective by conjugation to recombinant human epidermal growth factor (EGF). The EGF-P154 conjugate was able to bind to and enter target glioblastoma cells within 10-30 min via receptor (R)-mediated endocytosis by inducing internalization of the EGF-R molecules. In vitro treatment with EGF-P154 resulted in killing of glioblastoma cells at nanomolar concentrations with an IC50 of 813 +/- 139 nM,whereas no cytotoxicity against EGF-R-negative leukemia cells was observed,even at concentrations as high as 100 microM. The in vivo administration of EGF-P154 resulted in delayed tumor progression and improved tumor-free survival in a severe combined immunodeficient mouse glioblastoma xenograft model. Whereas none of the control mice remained alive tumor-free beyond 33 days (median tumor-free survival,19 days) and all control mice had tumors that rapidly progressed to reach an average size of textgreater 500 mm3 by 58 days,40% of mice treated for 10 consecutive days with 1 mg/kg/day EGF-P154 remained alive and free of detectable tumors for more than 58 days with a median tumor-free survival of 40 days. The tumors developing in the remaining 60% of the mice never reached a size textgreater 50 mm3. Thus,targeting WHI-P154 to the EGF-R may be useful in the treatment of glioblastoma multiforme.
View Publication
产品类型:
产品号#:
73542
73552
产品名:
WHI-P131
WHI-P154
文献
Hopkinson BM et al. ( 2017)
Oxidative medicine and cellular longevity 2017 5080128
Bioenergetic Changes during Differentiation of Human Embryonic Stem Cells along the Hepatic Lineage.
Mitochondrial dysfunction has been demonstrated to result in premature aging due to its effects on stem cells. Nevertheless,a full understanding of the role of mitochondrial bioenergetics through differentiation is still lacking. Here we show the bioenergetics profile of human stem cells of embryonic origin differentiating along the hepatic lineage. Our study reveals especially the transition between hepatic specification and hepatic maturation as dependent on mitochondrial respiration and demonstrates that even though differentiating cells are primarily dependent on glycolysis until induction of hepatocyte maturation,oxidative phosphorylation is essential at all stages of differentiation.
View Publication
Fassnacht M et al. (AUG 2005)
Clinical cancer research : an official journal of the American Association for Cancer Research 11 15 5566--71
Induction of CD4(+) and CD8(+) T-cell responses to the human stromal antigen, fibroblast activation protein: implication for cancer immunotherapy.
PURPOSE: The propensity of tumor cells to escape immune elimination could limit,if not defeat,the long-term benefits of effective immunotherapeutic protocols. Immunologic targeting of tumor stroma could significantly reduce the ability of tumors to evade immune elimination. Murine studies have shown that inducing immunity against angiogenesis-associated products engenders potent antitumor immunity without significant pathology. It is,however,not known whether T cells corresponding to stromal products are present in humans. In this study,we describe a method to screen for human stromal products that have not triggered significant tolerance and could therefore serve as candidate antigens for cancer immunotherapy. EXPERIMENTAL DESIGN: To identify candidates for human stromal antigens,we used an in vitro-screening method to determine whether dendritic cells transfected with mRNA encoding products,which are overexpressed in the tumor stroma,are capable of stimulating cytotoxic CD8(+) (CTL) responses from human peripheral blood mononuclear cells. RESULTS: CTL responses could be consistently generated against fibroblast activation protein (FAP) but not against matrix metalloproteinase-9 (MMP-9) or MMP-14. To enhance the immunogenicity of the mRNA-translated FAP product,a lysosomal targeting signal derived from lysosome-associated membrane protein-1 (LAMP-1) was fused to the COOH terminus of FAP to redirect the translated product into the class II presentation pathway. Dendritic cells transfected with mRNA encoding the FAP-LAMP fusion product stimulated enhanced CD4(+) and CD8(+) T-cell responses. CONCLUSION: This study identifies FAP,a protease preferentially expressed in tumor-associated fibroblasts,as a candidate human stromal antigen to target in the setting of cancer immunotherapy,and shows that differential expression of stromal products is not a sufficient criteria to indicate its immunogenicity in a vaccination setting.
View Publication
产品类型:
产品号#:
产品名:
文献
Gonzalez-Velasquez FJ and Moss MA (JAN 2008)
Journal of neurochemistry 104 2 500--13
Soluble aggregates of the amyloid-beta protein activate endothelial monolayers for adhesion and subsequent transmigration of monocyte cells.
Increasing evidence suggests that the deposition of amyloid plaques,composed primarily of the amyloid-beta protein (Abeta),within the cerebrovasculature is a frequent occurrence in Alzheimer's disease and may play a significant role in disease progression. Accordingly,the pathogenic mechanisms by which Abeta can alter vascular function may have therapeutic implications. Despite observations that Abeta elicits a number of physiological responses in endothelial cells,ranging from alteration of protein expression to cell death,the Abeta species accountable for these responses remains unexplored. In the current study,we show that isolated soluble Abeta aggregation intermediates activate human brain microvascular endothelial cells for both adhesion and subsequent transmigration of monocyte cells in the absence of endothelial cell death and monolayer disruption. In contrast,unaggregated Abeta monomer and mature Abeta fibril fail to induce any change in endothelial adhesion or transmigration. Correlations between average Abeta aggregate size and observed increases in adhesion illustrate that smaller soluble aggregates are more potent activators of endothelium. These results support previous studies demonstrating heightened neuronal activity of soluble Abeta aggregates,including Abeta-derived diffusible ligands,oligomers,and protofibrils,and further show that soluble aggregates also selectively exhibit activity in a vascular cell model.
View Publication
产品类型:
产品号#:
70034
产品名:
冻存的人外周血单核细胞
文献
Haase D et al. ( )
Journal of immunotherapy (Hagerstown,Md. : 1997) 38 6 250--8
Large-scale Isolation of Highly Pure Untouched" Regulatory T Cells in a GMP Environment for Adoptive Cell Therapy."
Adoptive cell therapy is an emerging treatment strategy for a number of serious diseases. Regulatory T (Treg) cells represent 1 cell type of particular interest for therapy of inflammatory conditions,as they are responsible for controlling unwanted immune responses. Initial clinical trials of adoptive transfer of Treg cells in patients with graft-versus-host disease were shown to be safe. However,obtaining sufficient numbers of highly pure and functional Treg cells with minimal contamination remains a challenge. We developed a novel approach to isolate untouched" human Treg cells from healthy donors on the basis of negative selection using the surface markers CD49d and CD127. This procedure�
View Publication