Hawkins F et al. (MAY 2017)
The Journal of clinical investigation
Prospective isolation of NKX2-1-expressing human lung progenitors derived from pluripotent stem cells.
It has been postulated that during human fetal development,all cells of the lung epithelium derive from embryonic,endodermal,NK2 homeobox 1-expressing (NKX2-1+) precursor cells. However,this hypothesis has not been formally tested owing to an inability to purify or track these progenitors for detailed characterization. Here we have engineered and developmentally differentiated NKX2-1GFP reporter pluripotent stem cells (PSCs) in vitro to generate and isolate human primordial lung progenitors that express NKX2-1 but are initially devoid of differentiated lung lineage markers. After sorting to purity,these primordial lung progenitors exhibited lung epithelial maturation. In the absence of mesenchymal coculture support,this NKX2-1+ population was able to generate epithelial-only spheroids in defined 3D cultures. Alternatively,when recombined with fetal mouse lung mesenchyme,the cells recapitulated epithelial-mesenchymal developing lung interactions. We imaged these progenitors in real time and performed time-series global transcriptomic profiling and single-cell RNA sequencing as they moved through the earliest moments of lung lineage specification. The profiles indicated that evolutionarily conserved,stage-dependent gene signatures of early lung development are expressed in primordial human lung progenitors and revealed a CD47hiCD26lo cell surface phenotype that allows their prospective isolation from untargeted,patient-specific PSCs for further in vitro differentiation and future applications in regenerative medicine.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Razaq MA et al. (MAR 2017)
British journal of haematology 176 6 971--983
A molecular roadmap of definitive erythropoiesis from human induced pluripotent stem cells.
Human induced pluripotent stem cells (hiPSCs) are being considered for use in understanding haematopoietic disorders and as a potential source of in vitro manufactured red cells. Here,we show that hiPSCs are able to recapitulate various stages of developmental erythropoiesis. We show that primitive erythroblasts arise first,express CD31(+) with CD235a(+),embryonic globins and red cell markers,but fail to express the hallmark red cell transcripts of adult erythropoiesis. When hiPSC-derived CD45(+) CD235a(-) haematopoietic progenitors are isolated on day 12 and further differentiated on OP9 stroma,they selectively express CD36(+) and CD235a(+),adult erythroid transcripts for transcription factors (e.g.,BCL11A,KLF1) and fetal/adult globins (HBG1/2,HBB). Importantly,hiPSC- and cord-derived CD36(+) CD235a(+) erythroblasts show a striking homology by transcriptome array profiling (only 306 transcripts with a 2Log fold change<1textperiodcentered5- or 2textperiodcentered8-fold). Phenotypic and transcriptome profiling of CD45(+) CD117(+) CD235a(+) pro-erythroblasts and terminally differentiated erythroblasts is also provided,including evidence of a HbF (fetal) to HbA (adult) haemoglobin switch and enucleation,that mirrors their definitive erythroblast cord-derived counterparts. These findings provide a molecular roadmap of developmental erythropoiesis from hiPSC sources at several critical stages,but also helps to inform on their use for clinical applications and modelling human haematopoietic disease.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
P. Li et al. (mar 2022)
Journal for immunotherapy of cancer 10 3
1$\alpha$,25(OH)2D3 reverses exhaustion and enhances antitumor immunity of human cytotoxic T cells.
BACKGROUND Epidemiological surveys have revealed that low serum vitamin D level was correlated with increased risk of tumors. Dysfunctional T cells in patients with tumor are characterized as exhausted with high levels of immune checkpoint receptors (ICRs). However,whether the reduced level of vitamin D in patients with cancer correlates with cytotoxic T-cell exhaustion is unknown. METHODS Periphery blood samples from 172 patients with non-small cell lung cancer (NSCLC) were prospectively collected. Patients with NSCLC received one course of intravenous docetaxel (75 mg/m2) followed by treatment with or without rocaltrol at a dose of 0.5-2.0 µg/day for total of 3 weeks. We performed phenotypical and functional analysis of T-cell through flow cytometry. Vitamin D receptor (VDR) knockout and overexpression CD8+ and V$\delta$2+ T cells were constructed using Cas9-gRNA targeted and overexpressing approaches to identify 1$\alpha$,25(OH)2D3/VDR-mediated transcription regulation for ICRs or antitumor activity in T cells. RESULTS We show that serum level of vitamin D is negatively correlated with expression of programmed cell death-1 (PD-1),T-cell immunoreceptor with Ig and ITIM domains (TIGIT),and T-cell immunoglobulin and mucin-domain containing-3 (Tim-3),but positively correlated with CD28 expression on CD8+ and V$\gamma$9V$\delta$2+ T cells in patients with NSCLC. 1$\alpha$,25(OH)2D3,the active form of vitamin D,promotes the nuclear translocation of VDR,which binds to the promoter region of Pdcd1,Tim3,and Tigit genes and inhibits their expression. Besides,1$\alpha$,25(OH)2D3 pretreatment also promotes the methylation of CpG island in the promoter region of the Pdcd1 gene and increases H3K27 acetylation at the promoter region of the Cd28 gene,which leads to surface PD-1 downregulation and CD28 upregulation,respectively. We further reveal that VDR-mediated Ca2+ influx enhanced expression of Th1 cytokines via T-cell receptor activation. Functionally,1$\alpha$,25(OH)2D3 pretreated CD8+ T cells or V$\gamma$9V$\delta$2+ T cells showed increased Th1 cytokine production and enhanced antitumor immunity. Finally,oral 1$\alpha$,25(OH)2D3 could also decrease expression of PD-1,Tim-3,TIGIT and increase expression of CD28,resulting in cytokine production (associated with antitumor immunity) by cytotoxic T cells of patients with NSCLC. CONCLUSIONS Our findings uncover the pleiotropic effects of 1$\alpha$,25(OH)2D3 in rescuing the exhausted phenotype of human cytotoxic T cells in patients with tumor and in promoting their antitumor immunity. TRIAL REGISTRATION NUMBER ChiCTR2100051135.
View Publication
产品类型:
产品号#:
19255
产品名:
EasySep™人Gamma/Delta T细胞分选试剂盒
文献
Milush JM et al. (NOV 2009)
Blood 114 23 4823--31
Functionally distinct subsets of human NK cells and monocyte/DC-like cells identified by coexpression of CD56, CD7, and CD4.
The lack of natural killer (NK) cell-specific markers,as well as the overlap among several common surface antigens and functional properties,has obscured the delineation between NK cells and dendritic cells. Here,novel subsets of peripheral blood CD3/14/19(neg) NK cells and monocyte/dendritic cell (DC)-like cells were identified on the basis of CD7 and CD4 expression. Coexpression of CD7 and CD56 differentiates NK cells from CD56+ monocyte/DC-like cells,which lack CD7. In contrast to CD7+CD56+ NK cells,CD7(neg)CD56+ cells lack expression of NK cell-associated markers,but share commonalities in their expression of various monocyte/DC-associated markers. Using CD7,we observed approximately 60% of CD4+CD56+ cells were CD7(neg) cells,indicating the actual frequency of activated CD4+ NK cells is much lower in the blood than previously recognized. Functionally,only CD7+ NK cells secrete gamma interferon (IFNgamma) and degranulate after interleukin-12 (IL-12) plus IL-18 or K562 target cell stimulation. Furthermore,using CD7 to separate CD56+ NK cells and CD56+ myeloid cells,we demonstrate that unlike resting CD7+CD56+ NK cells,the CD7(neg)CD56+ myeloid cells stimulate a potent allogeneic response. Our data indicate that CD7 and CD56 coexpression discriminates NK cells from CD7(neg)CD56+ monocyte/DC-like cells,thereby improving our ability to study the intricacies of NK-cell subset phenotypes and functions in vivo.
View Publication
产品类型:
产品号#:
19051
19051RF
产品名:
EasySep™人T细胞富集试剂盒
RoboSep™ 人T细胞富集试剂盒含滤芯吸头
文献
Hartung O et al. (AUG 2010)
Current protocols in stem cell biology Chapter 1 Unit 1C.10
Clump passaging and expansion of human embryonic and induced pluripotent stem cells on mouse embryonic fibroblast feeder cells.
The ability of human embryonic stem cells (hESCs) to differentiate into essentially all somatic cell types has made them a valuable tool for studying human development and has positioned them for broad applications in toxicology,regenerative medicine,and drug discovery. This unit describes a protocol for the large-scale expansion and maintenance of hESCs in vitro. hESC cultures must maintain a balance between the cellular states of pluripotency and differentiation; thus,researchers must use care when growing these technically demanding cells. The culture system is based largely on the use of a proprietary serum-replacement product and basic fibroblast growth factor (bFGF),with mouse embryonic fibroblasts as a feeder layer. These conditions provide the basis for relatively inexpensive maintenance and expansion of hESCs,as well as their engineered counterparts,human induced pluripotent stem cells (hiPSCs).
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Hattermann K et al. (MAY 2007)
FASEB journal : official publication of the Federation of American Societies for Experimental Biology 21 7 1575--85
The Toll-like receptor 7/8-ligand resiquimod (R-848) primes human neutrophils for leukotriene B4, prostaglandin E2 and platelet-activating factor biosynthesis.
Toll-like receptors (TLR) recognize pathogen-associated molecular patterns and play important roles in the innate immune system. While single-stranded viral RNA is the natural ligand of TLR7/TLR8,the imidazoquinoline resiquimod (R-848) is recognized as a potent synthetic agonist of TLR7/TLR8. We investigated the effects of TLR7/8 activation on lipid mediator production in polymorphonuclear leukocytes exposed to R-848. Although R-848 had minimal effects by itself,it strongly enhanced leukotriene B4 formation on subsequent stimulation by fMLP,platelet-activating factor,and the ionophore A23187. R-848 acted via TLR8 but not TLR7 as shown by the lack of effect of the TLR7-specific ligand imiquimod. Priming with R-848 also resulted in enhanced arachidonic acid release and platelet-activating factor formation following fMLP stimulation,as well as enhanced prostaglandin E2 synthesis following the addition of arachidonic acid. Western blot analysis demonstrated that R-848 induced the phosphorylation of the cytosolic phospholipase A2alpha,promoted 5-lipoxygenase translocation and potently stimulated the expression of the type 2 cyclooxygenase. Bafilomycin A1,an inhibitor of endosomal acidification,efficiently inhibited all R-848-induced effects. These studies demonstrate that TLR8 signaling strongly promotes inflammatory lipid mediator biosynthesis and provide novel insights on innate immune response to viral infections.
View Publication
产品类型:
产品号#:
73782
73784
产品名:
R848
R848
文献
Want AJ et al. (JAN 2012)
Regenerative medicine 7 1 71--84
Large-scale expansion and exploitation of pluripotent stem cells for regenerative medicine purposes: beyond the T flask.
Human pluripotent stem cells will likely be a significant part of the regenerative medicine-driven healthcare revolution. In order to realize this potential,culture processes must be standardized,scalable and able to produce clinically relevant cell numbers,whilst maintaining critical biological functionality. This review comprises a broad overview of important bioprocess considerations,referencing the development of biopharmaceutical processes in an effort to learn from current best practice in the field. Particular focus is given to the recent efforts to grow human pluripotent stem cells in microcarrier or aggregate suspension culture,which would allow geometric expansion of productive capacity were it to be fully realized. The potential of these approaches is compared with automation of traditional T-flask culture,which may provide a cost-effective platform for low-dose,low-incidence conditions or autologous therapies. This represents the first step in defining the full extent of the challenges facing bioprocess engineers in the exploitation of large-scale human pluripotent stem cell manufacture.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Neff AT et al. (AUG 2012)
Genome research 22 8 1457--67
Global analysis reveals multiple pathways for unique regulation of mRNA decay in induced pluripotent stem cells
Pluripotency is a unique state in which cells can self-renew indefinitely but also retain the ability to differentiate into other cell types upon receipt of extracellular cues. Although it is clear that stem cells have a distinct transcriptional program,little is known about how alterations in post-transcriptional mechanisms,such as mRNA turnover,contribute to the achievement and maintenance of pluripotency. Here we have assessed the rates of decay for the majority of mRNAs expressed in induced pluripotent stem (iPS) cells and the fully differentiated human foreskin fibroblasts (HFFs) they were derived from. Comparison of decay rates in the two cell types led to the discovery of three independent regulatory mechanisms that allow coordinated turnover of specific groups of mRNAs. One mechanism results in increased stability of many histone mRNAs in iPS cells. A second pathway stabilizes a large set of zinc finger protein mRNAs,potentially through reduced levels of miRNAs that target them. Finally,a group of transcripts bearing 3' UTR C-rich sequence elements,many of which encode transcription factors,are significantly less stable in iPS cells. Intriguingly,two poly(C)-binding proteins that recognize this type of element are reciprocally expressed in iPS and HFF cells. Overall,our results highlight the importance of post-transcriptional control in pluripotent cells and identify miRNAs and RNA-binding proteins whose activity may coordinately control expression of a wide range of genes in iPS cells.
View Publication
CXCR4 expression determines functional activity of bone marrow-derived mononuclear cells for therapeutic neovascularization in acute ischemia.
OBJECTIVE: Bone marrow-derived mononuclear cells (BMCs) improve the functional recovery after ischemia. However,BMCs comprise a heterogeneous mixture of cells,and it is not known which cell types are responsible for the induction of neovascularization after cell therapy. Because cell recruitment is critically dependent on the expression of the SDF-1-receptor CXCR4,we examined whether the expression of CXCR4 may identify a therapeutically active population of BMCs. METHODS AND RESULTS: Human CXCR4(+) and CXCR4(-) BMCs were sorted by magnetic beads. CXCR4(+) BMCs showed a significantly higher invasion capacity under basal conditions and after SDF-1 stimulation. Hematopoietic or mesenchymal colony-forming capacity did not differ between CXCR4(+) and CXCR4(-) BMCs. Injection of CXCR4(+) BMCs in mice after induction of hindlimb ischemia significantly improved the recovery of perfusion compared to injection of CXCR4(-) BMCs. Likewise,capillary density was significantly increased in CXCR4(+) BMC-treated mice. Because part of the beneficial effects of cell therapy were attributed to the release of paracrine effectors,we analyzed BMC supernatants for secreted factors. Importantly,supernatants of CXCR4(+) BMCs were enriched in the proangiogenic cytokines HGF and PDGF-BB. CONCLUSIONS: CXCR4(+) BMCs exhibit an increased therapeutic potential for blood flow recovery after acute ischemia. Mechanistically,their higher migratory capacity and their increased release of paracrine factors may contribute to enhanced tissue repair.
View Publication
产品类型:
产品号#:
05401
05402
05411
产品名:
MesenCult™ MSC 基础培养基(人)
MesenCult™ MSC 刺激补充剂(人)
MesenCult™ 增殖试剂盒(人)
文献
X. Wang et al. (apr 2022)
Leukemia 36 4 1015--1024
CD19/BAFF-R dual-targeted CAR T cells for the treatment of mixed antigen-negative variants of acute lymphoblastic leukemia.
Chimeric antigen receptor (CAR) T cells targeting CD19 mediate potent antitumor effects in B-cell malignancies including acute lymphoblastic leukemia (ALL),but antigen loss remains the major cause of treatment failure. To mitigate antigen escape and potentially improve the durability of remission,we developed a dual-targeting approach using an optimized,bispecific CAR construct that targets both CD19 and BAFF-R. CD19/BAFF-R dual CAR T cells exhibited antigen-specific cytokine release,degranulation,and cytotoxicity against both CD19-/- and BAFF-R-/- variant human ALL cells in vitro. Immunodeficient mice engrafted with mixed CD19-/- and BAFF-R-/- variant ALL cells and treated with a single dose of CD19/BAFF-R dual CAR T cells experienced complete eradication of both CD19-/- and BAFF-R-/- ALL variants,whereas mice treated with monospecific CD19 or BAFF-R CAR T cells succumbed to outgrowths of CD19-/BAFF-R+ or CD19+/BAFF-R- tumors,respectively. Further,CD19/BAFF-R dual CAR T cells showed prolonged in vivo persistence,raising the possibility that these cells may have the potential to promote durable remissions. Together,our data support clinical translation of BAFF-R/CD19 dual CAR T cells to treat ALL.
View Publication
产品类型:
产品号#:
17751
18000
产品名:
EasySep™ Release人CD3正选试剂盒
EasySep™磁极
文献
Poggi A et al. (MAR 2005)
Journal of immunology (Baltimore,Md. : 1950) 174 5 2653--60
Tumor-induced apoptosis of human IL-2-activated NK cells: role of natural cytotoxicity receptors.
We provide evidence that tumor cells can induce apoptosis of NK cells by engaging the natural cytotoxicity receptors (NCR) NKp30,NKp44,and NKp46. Indeed,the binding between NCR on NK cells and their putative ligands on tumor target cells led to NK cell apoptosis,and this event was abolished by blocking NCR/NCR-ligand interaction by anti-NCR-specific mAbs. The engagement of NCR induced up-regulation of Fas ligand (FasL) mRNA,FasL protein synthesis,and release. In turn,FasL interacting with Fas at NK cell surface causes NK cell suicide,as apoptosis of NK cells was inhibited by blocking FasL/Fas interaction with specific mAbs. Interestingly,NK cell apoptosis,but not killing of tumor target cells,is inhibited by cyclosporin A,suggesting that apoptosis and cytolysis are regulated by different biochemical pathways. These findings indicate that NCR are not only triggering molecules essential for antitumor activity,but also surface receptors involved in NK cell suicide.
View Publication