Neff AT et al. (AUG 2012)
Genome research 22 8 1457--67
Global analysis reveals multiple pathways for unique regulation of mRNA decay in induced pluripotent stem cells
Pluripotency is a unique state in which cells can self-renew indefinitely but also retain the ability to differentiate into other cell types upon receipt of extracellular cues. Although it is clear that stem cells have a distinct transcriptional program,little is known about how alterations in post-transcriptional mechanisms,such as mRNA turnover,contribute to the achievement and maintenance of pluripotency. Here we have assessed the rates of decay for the majority of mRNAs expressed in induced pluripotent stem (iPS) cells and the fully differentiated human foreskin fibroblasts (HFFs) they were derived from. Comparison of decay rates in the two cell types led to the discovery of three independent regulatory mechanisms that allow coordinated turnover of specific groups of mRNAs. One mechanism results in increased stability of many histone mRNAs in iPS cells. A second pathway stabilizes a large set of zinc finger protein mRNAs,potentially through reduced levels of miRNAs that target them. Finally,a group of transcripts bearing 3' UTR C-rich sequence elements,many of which encode transcription factors,are significantly less stable in iPS cells. Intriguingly,two poly(C)-binding proteins that recognize this type of element are reciprocally expressed in iPS and HFF cells. Overall,our results highlight the importance of post-transcriptional control in pluripotent cells and identify miRNAs and RNA-binding proteins whose activity may coordinately control expression of a wide range of genes in iPS cells.
View Publication
CXCR4 expression determines functional activity of bone marrow-derived mononuclear cells for therapeutic neovascularization in acute ischemia.
OBJECTIVE: Bone marrow-derived mononuclear cells (BMCs) improve the functional recovery after ischemia. However,BMCs comprise a heterogeneous mixture of cells,and it is not known which cell types are responsible for the induction of neovascularization after cell therapy. Because cell recruitment is critically dependent on the expression of the SDF-1-receptor CXCR4,we examined whether the expression of CXCR4 may identify a therapeutically active population of BMCs. METHODS AND RESULTS: Human CXCR4(+) and CXCR4(-) BMCs were sorted by magnetic beads. CXCR4(+) BMCs showed a significantly higher invasion capacity under basal conditions and after SDF-1 stimulation. Hematopoietic or mesenchymal colony-forming capacity did not differ between CXCR4(+) and CXCR4(-) BMCs. Injection of CXCR4(+) BMCs in mice after induction of hindlimb ischemia significantly improved the recovery of perfusion compared to injection of CXCR4(-) BMCs. Likewise,capillary density was significantly increased in CXCR4(+) BMC-treated mice. Because part of the beneficial effects of cell therapy were attributed to the release of paracrine effectors,we analyzed BMC supernatants for secreted factors. Importantly,supernatants of CXCR4(+) BMCs were enriched in the proangiogenic cytokines HGF and PDGF-BB. CONCLUSIONS: CXCR4(+) BMCs exhibit an increased therapeutic potential for blood flow recovery after acute ischemia. Mechanistically,their higher migratory capacity and their increased release of paracrine factors may contribute to enhanced tissue repair.
View Publication
产品类型:
产品号#:
05401
05402
05411
产品名:
MesenCult™ MSC 基础培养基(人)
MesenCult™ MSC 刺激补充剂(人)
MesenCult™ 增殖试剂盒(人)
文献
X. Wang et al. (apr 2022)
Leukemia 36 4 1015--1024
CD19/BAFF-R dual-targeted CAR T cells for the treatment of mixed antigen-negative variants of acute lymphoblastic leukemia.
Chimeric antigen receptor (CAR) T cells targeting CD19 mediate potent antitumor effects in B-cell malignancies including acute lymphoblastic leukemia (ALL),but antigen loss remains the major cause of treatment failure. To mitigate antigen escape and potentially improve the durability of remission,we developed a dual-targeting approach using an optimized,bispecific CAR construct that targets both CD19 and BAFF-R. CD19/BAFF-R dual CAR T cells exhibited antigen-specific cytokine release,degranulation,and cytotoxicity against both CD19-/- and BAFF-R-/- variant human ALL cells in vitro. Immunodeficient mice engrafted with mixed CD19-/- and BAFF-R-/- variant ALL cells and treated with a single dose of CD19/BAFF-R dual CAR T cells experienced complete eradication of both CD19-/- and BAFF-R-/- ALL variants,whereas mice treated with monospecific CD19 or BAFF-R CAR T cells succumbed to outgrowths of CD19-/BAFF-R+ or CD19+/BAFF-R- tumors,respectively. Further,CD19/BAFF-R dual CAR T cells showed prolonged in vivo persistence,raising the possibility that these cells may have the potential to promote durable remissions. Together,our data support clinical translation of BAFF-R/CD19 dual CAR T cells to treat ALL.
View Publication
产品类型:
产品号#:
17751
18000
产品名:
EasySep™ Release人CD3正选试剂盒
EasySep™磁极
文献
Poggi A et al. (MAR 2005)
Journal of immunology (Baltimore,Md. : 1950) 174 5 2653--60
Tumor-induced apoptosis of human IL-2-activated NK cells: role of natural cytotoxicity receptors.
We provide evidence that tumor cells can induce apoptosis of NK cells by engaging the natural cytotoxicity receptors (NCR) NKp30,NKp44,and NKp46. Indeed,the binding between NCR on NK cells and their putative ligands on tumor target cells led to NK cell apoptosis,and this event was abolished by blocking NCR/NCR-ligand interaction by anti-NCR-specific mAbs. The engagement of NCR induced up-regulation of Fas ligand (FasL) mRNA,FasL protein synthesis,and release. In turn,FasL interacting with Fas at NK cell surface causes NK cell suicide,as apoptosis of NK cells was inhibited by blocking FasL/Fas interaction with specific mAbs. Interestingly,NK cell apoptosis,but not killing of tumor target cells,is inhibited by cyclosporin A,suggesting that apoptosis and cytolysis are regulated by different biochemical pathways. These findings indicate that NCR are not only triggering molecules essential for antitumor activity,but also surface receptors involved in NK cell suicide.
View Publication
产品类型:
产品号#:
15025
15065
产品名:
RosetteSep™人NK细胞富集抗体混合物
RosetteSep™人NK细胞富集抗体混合物
文献
Wright JF et al. (MAY 2007)
The Journal of biological chemistry 282 18 13447--55
Identification of an interleukin 17F/17A heterodimer in activated human CD4+ T cells.
IL-17F and IL-17A are members of the IL-17 pro-inflammatory cytokine family. IL-17A has been implicated in the pathogenesis of autoimmune diseases. IL-17F is a disulfide-linked dimer that contains a cysteine-knot motif. We hypothesized that IL-17F and IL-17A could form a heterodimer due to their sequence homology and overlapping pattern of expression. We evaluated the structure of recombinant IL-17F and IL-17A proteins,as well as that of natural IL-17F and IL-17A derived from activated human CD4+ T cells,by enzyme-linked immunosorbent assay,immunoprecipitation followed by Western blotting,and mass spectrometry. We find that both IL-17F and IL-17A can form both homodimeric and heterodimeric proteins when expressed in a recombinant system,and that all forms of the recombinant proteins have in vitro functional activity. Furthermore,we find that in addition to the homodimers of IL-17F and IL-17A,activated human CD4+ T cells also produce the IL-17F/IL-17A heterodimer. These data suggest that the IL-17F/IL-17A heterodimer may contribute to the T cell-mediated immune responses.
View Publication
产品类型:
产品号#:
15022
15062
产品名:
RosetteSep™人CD4+ T细胞富集抗体混合物
RosetteSep™人CD4+ T细胞富集抗体混合物
文献
Kawase E ( 2016)
1307 61--69
Efficient Expansion of Dissociated Human Pluripotent Stem Cells Using a Synthetic Substrate.
Human pluripotent stem cells (hPSCs),including human embryonic stem cells and human-induced pluripotent stem cells,are a renewable cell source for a wide range of applications in regenerative medicine and useful tools for human disease modeling and drug discovery. For these purposes,large numbers of high-quality cells are essential. Recently,we showed that a biological substrate,recombinant E8 fragments of laminin isoforms,sustains long-term self-renewal of hPSCs in defined,xeno-free medium with dissociated single-cell passaging. Here,we describe a modified culture system with similar performance to efficiently expand hPSCs under defined,xeno-free conditions using a non-biological synthetic substrate.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Vanuytsel K et al. (SEP 2014)
Stem Cell Research 13 2 240--250
FANCA knockout in human embryonic stem cells causes a severe growth disadvantage
Fanconi anemia (FA) is an autosomal recessive disorder characterized by progressive bone marrow failure (BMF) during childhood,aside from numerous congenital abnormalities. FA mouse models have been generated; however,they do not fully mimic the hematopoietic phenotype. As there is mounting evidence that the hematopoietic impairment starts already in utero,a human pluripotent stem cell model would constitute a more appropriate system to investigate the mechanisms underlying BMF in FA and its developmental basis. Using zinc finger nuclease (ZFN) technology,we have created a knockout of FANCA in human embryonic stem cells (hESC). We introduced a selection cassette into exon 2 thereby disrupting the FANCA coding sequence and found that whereas mono-allelically targeted cells retain an unaltered proliferation potential,disruption of the second allele causes a severe growth disadvantage. As a result,heterogeneous cultures arise due to the presence of cells still carrying an unaffected FANCA allele,quickly outgrowing the knockout cells. When pure cultures of FANCA knockout hESC are pursued either through selection or single cell cloning,this rapidly results in growth arrest and such cultures cannot be maintained. These data highlight the importance of a functional FA pathway at the pluripotent stem cell stage. ?? 2014.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Liao J et al. (MAY 2015)
Nature Publishing Group 47 5 469--478
Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells.
Ignatius Irudayam J et al. (DEC 2015)
Data in Brief 5 871--878
Profile of Inflammation-associated genes during Hepatic Differentiation of Human Pluripotent Stem Cells
Expression of genes associated with inflammation was analyzed during differentiation of human pluripotent stem cells (PSCs) to hepatic cells. Messenger RNA transcript profiles of differentiated endoderm (day 5),hepatoblast (day 15) and hepatocyte-like cells (day 21) were obtained by RNA sequencing analysis. When compared to endoderm cells an immature cell type,the hepatic cells (days 15 and 21) had significantly higher expression of acute phase protein genes including complement factors,coagulation factors,serum amyloid A and serpins. Furthermore,hepatic phase of cells expressed proinflammatory cytokines IL18 and IL32 as well as cytokine receptors IL18R1,IL1R1,IL1RAP,IL2RG,IL6R,IL6ST and IL10RB. These cells also produced CCL14,CCL15,and CXCL- 1,2,3,16 and 17 chemokines. Endoderm cells had higher levels of chemokine receptors,CXCR4 and CXCR7,than that of hepatic cells. Sirtuin family of genes involved in aging,inflammation and metabolism were differentially regulated in endoderm and hepatic phase cells. Ligands and receptors of the tumor necrosis factor (TNF) family as well as downstream signaling factors TRAF2,TRAF4,FADD,NFKB1 and NFKBIB were differentially expressed during hepatic differentiation.
View Publication
NAP-2 Secreted by Human NK Cells Can Stimulate Mesenchymal Stem/Stromal Cell Recruitment.
Strategies for improved homing of mesenchymal stem cells (MSCs) to a place of injury are being sought and it has been shown that natural killer (NK) cells can stimulate MSC recruitment. Here,we studied the chemokines behind this recruitment. Assays were performed with bone marrow human MSCs and NK cells freshly isolated from healthy donor buffy coats. Supernatants from MSC-NK cell co-cultures can induce MSC recruitment but not to the same extent as when NK cells are present. Antibody arrays and ELISA assays confirmed that NK cells secrete RANTES (CCL5) and revealed that human NK cells secrete NAP-2 (CXCL7),a chemokine that can induce MSC migration. Inhibition with specific antagonists of CXCR2,a receptor that recognizes NAP-2,abolished NK cell-mediated MSC recruitment. This capacity of NK cells to produce chemokines that stimulate MSC recruitment points toward a role for this immune cell population in regulating tissue repair/regeneration.
View Publication
产品类型:
产品号#:
19055
19055RF
产品名:
EasySep™人NK细胞富集试剂盒
RoboSep™ 人NK细胞富集试剂盒含滤芯吸头
文献
Levina V et al. (JAN 2008)
PloS one 3 8 e3077
Drug-selected human lung cancer stem cells: cytokine network, tumorigenic and metastatic properties.
BACKGROUND: Cancer stem cells (CSCs) are thought to be responsible for tumor regeneration after chemotherapy,although direct confirmation of this remains forthcoming. We therefore investigated whether drug treatment could enrich and maintain CSCs and whether the high tumorogenic and metastatic abilities of CSCs were based on their marked ability to produce growth and angiogenic factors and express their cognate receptors to stimulate tumor cell proliferation and stroma formation. METHODOLOGY/FINDINGS: Treatment of lung tumor cells with doxorubicin,cisplatin,or etoposide resulted in the selection of drug surviving cells (DSCs). These cells expressed CD133,CD117,SSEA-3,TRA1-81,Oct-4,and nuclear beta-catenin and lost expression of the differentiation markers cytokeratins 8/18 (CK 8/18). DSCs were able to grow as tumor spheres,maintain self-renewal capacity,and differentiate. Differentiated progenitors lost expression of CD133,gained CK 8/18 and acquired drug sensitivity. In the presence of drugs,differentiation of DSCs was abrogated allowing propagation of cells with CSC-like characteristics. Lung DSCs demonstrated high tumorogenic and metastatic potential following inoculation into SCID mice,which supported their classification as CSCs. Luminex analysis of human and murine cytokines in sonicated lysates of parental- and CSC-derived tumors revealed that CSC-derived tumors contained two- to three-fold higher levels of human angiogenic and growth factors (VEGF,bFGF,IL-6,IL-8,HGF,PDGF-BB,G-CSF,and SCGF-beta). CSCs also showed elevated levels of expression of human VEGFR2,FGFR2,CXCR1,2 and 4 receptors. Moreover,human CSCs growing in SCID mice stimulated murine stroma to produce elevated levels of angiogenic and growth factors. CONCLUSIONS/SIGNIFICANCE: These findings suggest that chemotherapy can lead to propagation of CSCs and prevention of their differentiation. The high tumorigenic and metastatic potentials of CSCs are associated with efficient cytokine network production that may represent a target for increased efficacy of cancer therapy.
View Publication