Storms RW et al. (AUG 1999)
Proceedings of the National Academy of Sciences of the United States of America 96 16 9118--23
Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity.
Because hematopoietic stem cells are rich in aldehyde dehydrogenase (ALDH) activity,we developed a fluorescent substrate for ALDH,termed BODIPY aminoacetaldehyde (BAAA),and tested its potential for isolating primitive human hematopoietic cells. A population of cells with low orthogonal light scattering and bright fluorescence intensity (SSC(lo)ALDH(br) cells) could be readily fractionated from human umbilical cord blood cells costained with BAAA and the multidrug-resistance inhibitor verapamil. The SSC(lo)ALDH(br) population was depleted of lineage-committed cells,40-90% pure for CD34(+)CD38(lo/-) cells,and enriched 50- to 100-fold for primitive hematopoietic progenitors detected in short- and long-term culture analyses. Together,these observations indicate that fractionating human hematopoietic stem cells on the basis of ALDH activity using BAAA is an effective method for isolating primitive human hematopoietic progenitors. This technique may be useful for isolating stem cells from other tissues as well.
View Publication
产品类型:
产品号#:
01700
01705
01701
01702
产品名:
ALDEFLUOR™工具
ALDEFLUOR™DEAB试剂
ALDEFLUOR™测定缓冲液
文献
Nguyen CQ et al. (JUL 2007)
Journal of immunology (Baltimore,Md. : 1950) 179 1 382--90
IL-4-STAT6 signal transduction-dependent induction of the clinical phase of Sjögren's syndrome-like disease of the nonobese diabetic mouse.
NOD.B10-H2(b) and NOD/LtJ mice manifest,respectively,many features of primary and secondary Sjögren's syndrome (SjS),an autoimmune disease affecting primarily the salivary and lacrimal glands leading to xerostomia (dry mouth) and xerophthalmia (dry eyes). B lymphocytes play a central role in the onset of SjS with clinical manifestations dependent on the appearance of autoantibodies reactive to multiple components of acinar cells. Previous studies with NOD.IL4(-/-) and NOD.B10-H2(b).IL4(-/-) mice suggest that the Th2 cytokine,IL-4,plays a vital role in the development and onset of SjS-like disease in the NOD mouse model. To investigate the molecular mechanisms by which IL-4 controls SjS development,a Stat6 gene knockout mouse,NOD.B10-H2(b).C-Stat6(-/-),was constructed and its disease profile was defined and compared with that of NOD.B10-H2(b).C-Stat6(+/+) mice. As the NOD.B10-H2(b).C-Stat6(-/-) mice aged from 4 to 24 wk,they exhibited leukocyte infiltration of the exocrine glands,produced anti-nuclear autoantibodies,and showed loss and gain of saliva-associated proteolytic enzymes,similar to NOD.B10-H2(b).C-Stat6(+/+) mice. In contrast,NOD.B10-H2(b).C-Stat6(-/-) mice failed to develop glandular dysfunction,maintaining normal saliva flow rates. NOD.B10-H2(b).C-Stat6(-/-) mice were found to lack IgG1 isotype-specific anti-muscarinic acetylcholine type-3 receptor autoantibodies. Furthermore,the IgG fractions from NOD.B10-H2(b).C-Stat6(-/-) sera were unable to induce glandular dysfunction when injected into naive recipient C57BL/6 mice. NOD.B10-H2(b).C-Stat6(-/-) mice,like NOD.B10-H2(b).IL4(-/-) mice,are unable to synthesize IgG1 Abs,an observation that correlates with an inability to develop end-stage clinical SjS-like disease. These data imply a requirement for the IL-4/STAT6-pathway for onset of the clinical phase of SjS-like disease in the NOD mouse model.
View Publication
产品类型:
产品号#:
产品名:
文献
Migliaccio AR et al. (FEB 2003)
The Journal of experimental medicine 197 3 281--96
GATA-1 as a regulator of mast cell differentiation revealed by the phenotype of the GATA-1low mouse mutant.
Here it is shown that the phenotype of adult mice lacking the first enhancer (DNA hypersensitive site I) and the distal promoter of the GATA-1 gene (neo Delta HS or GATA-1(low) mutants) reveals defects in mast cell development. These include the presence of morphologically abnormal alcian blue(+) mast cells and apoptotic metachromatic(-) mast cell precursors in connective tissues and peritoneal lavage and numerous (60-70% of all the progenitors) unique" trilineage cells committed to erythroid�
View Publication
产品类型:
产品号#:
04960
04902
04900
04961
04901
04963
04962
04970
04971
产品名:
MegaCult™-C胶原蛋白和不含细胞因子的培养基
胶原蛋白溶液
MegaCult™-C培养基无细胞因子
MegaCult™-C胶原蛋白和细胞因子培养基
MegaCult™-C细胞因子培养基
双室载玻片试剂盒
MegaCult™-C cfu染色试剂盒
MegaCult™-C不含细胞因子完整试剂盒
MegaCult™-C细胞因子完整试剂盒
文献
Y. P. Zhu et al. (AUG 2018)
Cell reports 24 9 2329--2341.e8
Identification of an Early Unipotent Neutrophil Progenitor with Pro-tumoral Activity in Mouse and Human Bone Marrow.
Neutrophils are short-lived cells that play important roles in both health and disease. Neutrophils and monocytes originate from the granulocyte monocyte progenitor (GMP) in bone marrow; however,unipotent neutrophil progenitors are not well defined. Here,we use cytometry by time of flight (CyTOF) and single-cell RNA sequencing (scRNA-seq) methodologies to identify a committed unipotent early-stage neutrophil progenitor (NeP) in adult mouse bone marrow. Importantly,we found a similar unipotent NeP (hNeP) in human bone marrow. Both NeP and hNeP generate only neutrophils. NeP and hNeP both significantly increase tumor growth when transferred into murine cancer models,including a humanized mouse model. hNeP are present in the blood of treatment-naive melanoma patients but not of healthy subjects. hNeP can be readily identified by flow cytometry and could be used as a biomarker for early cancer discovery. Understanding the biology of hNeP should allow the development of new therapeutic targets for neutrophil-related diseases,including cancer.
View Publication
产品类型:
产品号#:
17951
17951RF
产品名:
EasySep™人T细胞分选试剂盒
RoboSep™ 人T细胞分选试剂盒
文献
Y. Zeng et al. (jul 2019)
Oncotarget 10 43 4479--4491
CD90low MSCs modulate intratumoral immunity to confer antitumor activity in a mouse model of ovarian cancer.
Both anti-tumoral and pro-tumoral effects of mesenchymal stem cells (MSCs) in preclinical treatment of ovarian cancer have been controversially demonstrated. In this study,we profiled the phenotypes of mouse compact bone-derived MSCs (CB-MSCs) and bone marrow-derived MSCs (BM-MSCs) and found that CB-MSCs expressed lower CD90 compared to BM-MSCs. We examined gene expression of immune regulating cytokines of CB-MSCs in 2D and 3D culture and under stimulation with TLR4 agonist LPS or immune activator VIC-008. Our data showed that when CB-MSCs were cultured in simulated in vivo 3D condition,CD90 expression was further decreased. Moreover,gene expressions of immune activating cytokines IL-12,IL-21,IFNgamma and a pro-inflammatory cytokine CXCL10 in CB-MSCs were increased in 3D culture whereas gene expression of anti-inflammatory cytokines IL-10 and CCL5 were downregulated. Stimulation of CB-MSCs by LPS or VIC-008 presented similar profile of the cytokine gene expressions to that in 3D culture which might benefit the anti-tumor efficacy of CD90low MSCs. The anti-tumor effects of CD90low CB-MSCs alone or in combination with VIC-008 were evaluated in a syngeneic orthotopic mouse model of ovarian cancer. Treatment that combines CB-MSCs and VIC-008 significantly decreased tumor growth and prolonged mouse survival. This was associated with the increase of activated anti-tumoral CD4+ and CD8+ T cells and the decrease of Treg cells in the tumor microenvironment. Taken together,our study demonstrates the synergistic anti-tumoral efficacy by application of CB-MSCs combined with immune activator VIC-008 and provides new insight into CD90low MSCs as a new anti-tumor arsenal.
View Publication
产品类型:
产品号#:
05513
产品名:
MesenCult™ 扩增试剂盒 (小鼠)
文献
Storms RW et al. (JUL 2005)
Blood 106 1 95--102
Distinct hematopoietic progenitor compartments are delineated by the expression of aldehyde dehydrogenase and CD34.
A broad range of hematopoietic stem cells and progenitors reside within a fraction of umbilical cord blood (UCB) that exhibits low light scatter properties (SSC(lo)) and high expression of aldehyde dehydrogenase (ALDH(br)). Many SSC(lo) ALDH(br) cells coexpress CD34; however,other cells express either ALDH or CD34. To investigate the developmental potential of these cell subsets,purified ALDH(br) CD34+,ALDH(neg) CD34+,and ALDH(br) CD34(neg) UCB cells were characterized within a variety of in vivo and in vitro assays. Primitive progenitors capable of multilineage development were monitored in long- and short-term repopulation assays performed on nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice,and in primary and secondary long-term culture assays. These progenitors were highly enriched within the ALDH(br) CD34+ fraction. This cell fraction also enriched short-term myeloid progenitors that were detected in vitro. By comparison,ALDH(neg) CD34+ cells contained few primitive progenitors and had diminished short-term myeloid potential but exhibited enhanced short-term natural killer (NK) cell development in vitro. The ALDH(br) CD34(neg) cells were not efficiently supported by any of the assays used. These studies suggested that in particular the expression of ALDH delineated distinct CD34+ stem cell and progenitor compartments. The differential expression of ALDH may provide a means to explore normal and malignant processes associated with myeloid and lymphoid development.
View Publication
产品类型:
产品号#:
01700
01705
01702
产品名:
ALDEFLUOR™工具
ALDEFLUOR™DEAB试剂
ALDEFLUOR™测定缓冲液
文献
Corti S et al. (OCT 2008)
The Journal of clinical investigation 118 10 3316--30
Neural stem cell transplantation can ameliorate the phenotype of a mouse model of spinal muscular atrophy.
Spinal muscular atrophy (SMA),a motor neuron disease (MND) and one of the most common genetic causes of infant mortality,currently has no cure. Patients with SMA exhibit muscle weakness and hypotonia. Stem cell transplantation is a potential therapeutic strategy for SMA and other MNDs. In this study,we isolated spinal cord neural stem cells (NSCs) from mice expressing green fluorescent protein only in motor neurons and assessed their therapeutic effects on the phenotype of SMA mice. Intrathecally grafted NSCs migrated into the parenchyma and generated a small proportion of motor neurons. Treated SMA mice exhibited improved neuromuscular function,increased life span,and improved motor unit pathology. Global gene expression analysis of laser-capture-microdissected motor neurons from treated mice showed that the major effect of NSC transplantation was modification of the SMA phenotype toward the wild-type pattern,including changes in RNA metabolism proteins,cell cycle proteins,and actin-binding proteins. NSC transplantation positively affected the SMA disease phenotype,indicating that transplantation of NSCs may be a possible treatment for SMA.
View Publication
产品类型:
产品号#:
01700
01705
01702
产品名:
ALDEFLUOR™工具
ALDEFLUOR™DEAB试剂
ALDEFLUOR™测定缓冲液
文献
Sommer G et al. (MAY 2003)
Proceedings of the National Academy of Sciences of the United States of America 100 11 6706--11
Gastrointestinal stromal tumors in a mouse model by targeted mutation of the Kit receptor tyrosine kinase.
Oncogenic Kit mutations are found in somatic gastrointestinal (GI) stromal tumors (GISTs) and mastocytosis. A mouse model for the study of constitutive activation of Kit in oncogenesis has been produced by a knock-in strategy introducing a Kit exon 11-activating mutation into the mouse genome based on a mutation found in a case of human familial GIST syndrome. Heterozygous mutant KitV558Delta/+ mice develop symptoms of disease and eventually die from pathology in the GI tract. Patchy hyperplasia of Kit-positive cells is evident within the myenteric plexus of the entire GI tract. Neoplastic lesions indistinguishable from human GISTs were observed in the cecum of the mutant mice with high penetrance. In addition,mast cell numbers in the dorsal skin were increased. Therefore KitV558Delta/+ mice reproduce human familial GISTs,and they may be used as a model for the study of the role and mechanisms of Kit in neoplasia. Importantly,these results demonstrate that constitutive Kit signaling is critical and sufficient for induction of GIST and hyperplasia of interstitial cells of Cajal.
View Publication
产品类型:
产品号#:
09600
09650
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
文献
Capron C et al. (AUG 2010)
Blood 116 8 1244--53
A major role of TGF-beta1 in the homing capacities of murine hematopoietic stem cell/progenitors.
Transforming growth factor-beta1 (TGF-beta1) is a pleiotropic cytokine with major in vitro effects on hematopoietic stem cells (HSCs) and lymphocyte development. Little is known about hematopoiesis from mice with constitutive TGF-beta1 inactivation largely because of important embryonic lethality and development of a lethal inflammatory disorder in TGF-beta1(-/-) pups,making these studies difficult. Here,we show that no sign of the inflammatory disorder was detectable in 8- to 10-day-old TGF-beta1(-/-) neonates as judged by both the number of T-activated and T-regulator cells in secondary lymphoid organs and the level of inflammatory cytokines in sera. After T-cell depletion,the inflammatory disease was not transplantable in recipient mice. Bone marrow cells from 8- to 10-day-old TGF-beta1(-/-) neonates showed strikingly impaired short- and long-term reconstitutive activity associated with a parallel decreased in vivo homing capacity of lineage negative (Lin(-)) cells. In addition an in vitro-reduced survival of immature progenitors (Lin(-) Kit(+) Sca(+)) was observed. Similar defects were found in liver cells from TGF-beta1(-/-) embryos on day 14 after vaginal plug. These data indicate that TGF-beta1 is a critical regulator for in vivo homeostasis of the HSCs,especially for their homing potential.
View Publication
产品类型:
产品号#:
03234
09600
09650
产品名:
MethoCult™M3234
StemSpan™ SFEM
StemSpan™ SFEM
文献
Kolhar P et al. (APR 2010)
Journal of biotechnology 146 3 143--6
Synthetic surfaces for human embryonic stem cell culture.
Human embryonic stem cells (hESCs) have numerous potential biomedical applications owing to their unique abilities for self-renewal and pluripotency. Successful clinical application of hESCs and derivatives necessitates the culture of these cells in a fully defined environment. We have developed a novel peptide-based surface that uses a high-affinity cyclic RGD peptide for culture of hESCs under chemically defined conditions.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Steinhardt LC et al. (DEC 2011)
The American journal of tropical medicine and hygiene 85 6 1015--24
Review: Malaria chemoprophylaxis for travelers to Latin America.
Because of recent declining malaria transmission in Latin America,some authorities have recommended against chemoprophylaxis for most travelers to this region. However,the predominant parasite species in Latin America,Plasmodium vivax,can form hypnozoites sequestered in the liver,causing malaria relapses. Additionally,new evidence shows the potential severity of vivax infections,warranting continued consideration of prophylaxis for travel to Latin America. Individualized travel risk assessments are recommended and should consider travel locations,type,length,and season,as well as probability of itinerary changes. Travel recommendations might include no precautions,mosquito avoidance only,or mosquito avoidance and chemoprophylaxis. There are a range of good options for chemoprophylaxis in Latin America,including atovaquone-proguanil,doxycycline,mefloquine,and--in selected areas--chloroquine. Primaquine should be strongly considered for nonpregnant,G6PD-nondeficient patients traveling to vivax-endemic areas of Latin America,and it has the added benefit of being the only drug to protect against malaria relapses.
View Publication
产品类型:
产品号#:
72742
产品名:
强力霉素(盐酸盐)
文献
Myers FB et al. (JAN 2013)
Lab on a chip 13 2 220--8
Label-free electrophysiological cytometry for stem cell-derived cardiomyocyte clusters.
Stem cell therapies hold great promise for repairing tissues damaged due to disease or injury. However,a major obstacle facing this field is the difficulty in identifying cells of a desired phenotype from the heterogeneous population that arises during stem cell differentiation. Conventional fluorescence flow cytometry and magnetic cell purification require exogenous labeling of cell surface markers which can interfere with the performance of the cells of interest. Here,we describe a non-genetic,label-free cell cytometry method based on electrophysiological response to stimulus. As many of the cell types relevant for regenerative medicine are electrically-excitable (e.g. cardiomyocytes,neurons,smooth muscle cells),this technology is well-suited for identifying cells from heterogeneous stem cell progeny without the risk and expense associated with molecular labeling or genetic modification. Our label-free cell cytometer is capable of distinguishing clusters of undifferentiated human induced pluripotent stem cells (iPSC) from iPSC-derived cardiomyocyte (iPSC-CM) clusters. The system utilizes a microfluidic device with integrated electrodes for both electrical stimulation and recording of extracellular field potential (FP) signals from suspended cells in flow. The unique electrode configuration provides excellent rejection of field stimulus artifact while enabling sensitive detection of FPs with a noise floor of 2 $$V(rms). Cells are self-aligned to the recording electrodes via hydrodynamic flow focusing. Based on automated analysis of these extracellular signals,the system distinguishes cardiomyocytes from non-cardiomyocytes. This is an entirely new approach to cell cytometry,in which a cell's functionality is assessed rather than its expression profile or physical characteristics.
View Publication