Ruiz S et al. (JAN 2011)
Current biology : CB 21 1 45--52
A high proliferation rate is required for cell reprogramming and maintenance of human embryonic stem cell identity.
Human embryonic stem (hES) cells show an atypical cell-cycle regulation characterized by a high proliferation rate and a short G1 phase. In fact,a shortened G1 phase might protect ES cells from external signals inducing differentiation,as shown for certain stem cells. It has been suggested that self-renewal and pluripotency are intimately linked to cell-cycle regulation in ES cells,although little is known about the overall importance of the cell-cycle machinery in maintaining ES cell identity. An appealing model to address whether the acquisition of stem cell properties is linked to cell-cycle regulation emerged with the ability to generate induced pluripotent stem (iPS) cells by expression of defined transcription factors. Here,we show that the characteristic cell-cycle signature of hES cells is acquired as an early event in cell reprogramming. We demonstrate that induction of cell proliferation increases reprogramming efficiency,whereas cell-cycle arrest inhibits successful reprogramming. Furthermore,we show that cell-cycle arrest is sufficient to drive hES cells toward irreversible differentiation. Our results establish a link that intertwines the mechanisms of cell-cycle control with the mechanisms underlying the acquisition and maintenance of ES cell identity.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Gu Q et al. (MAY 2017)
Advanced healthcare materials
3D Bioprinting Human Induced Pluripotent Stem Cell Constructs for In Situ Cell Proliferation and Successive Multilineage Differentiation.
The ability to create 3D tissues from induced pluripotent stem cells (iPSCs) is poised to revolutionize stem cell research and regenerative medicine,including individualized,patient-specific stem cell-based treatments. There are,however,few examples of tissue engineering using iPSCs. Their culture and differentiation is predominantly planar for monolayer cell support or induction of self-organizing embryoids (EBs) and organoids. Bioprinting iPSCs with advanced biomaterials promises to augment efforts to develop 3D tissues,ideally comprising direct-write printing of cells for encapsulation,proliferation,and differentiation. Here,such a method,employing a clinically amenable polysaccharide-based bioink,is described as the first example of bioprinting human iPSCs for in situ expansion and sequential differentiation. Specifically,There are extrusion printed the bioink including iPSCs,alginate (Al; 5% weight/volume [w/v]),carboxymethyl-chitosan (5% w/v),and agarose (Ag; 1.5% w/v),crosslinked the bioink in calcium chloride for a stable and porous construct,proliferated the iPSCs within the construct and differentiated the same iPSCs into either EBs comprising cells of three germ lineages-endoderm,ectoderm,and mesoderm,or more homogeneous neural tissues containing functional migrating neurons and neuroglia. This defined,scalable,and versatile platform is envisaged being useful in iPSC research and translation for pharmaceuticals development and regenerative medicine.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
I. Baccelli et al. ( 2017)
Blood cancer journal 7 e529
A novel approach for the identification of efficient combination therapies in primary human acute myeloid leukemia specimens.
Appropriate culture methods for the interrogation of primary leukemic samples were hitherto lacking and current assays for compound screening are not adapted for large-scale investigation of synergistic combinations. In this study,we report a novel approach that efficiently distills synthetic lethal interactions between small molecules active on primary human acute myeloid leukemia (AML) specimens. In single-dose experiments and under culture conditions preserving leukemia stem cell activity,our strategy considerably reduces the number of tests needed for the identification of promising compound combinations. Initially conducted with a selected library of 5000 small molecules and 20 primary AML specimens,it reveals 5 broad classes of sensitized therapeutic target pathways along with their synergistic patient-specific fingerprints. This novel method opens new avenues for the development of AML personalized therapeutics and may be generalized to other tumor types,for which in vitro cancer stem cell cultures have been developed.
View Publication
产品类型:
产品号#:
09600
02698
09500
产品名:
StemSpan™ SFEM
人类低密度脂蛋白
BIT 9500血清替代物
文献
Nie S et al. (FEB 2015)
Journal of proteome research 14 2 814--22
Tenascin-C: a novel candidate marker for cancer stem cells in glioblastoma identified by tissue microarrays.
Glioblastoma multiforme (GBM) is a highly aggressive brain tumor,with dismal survival outcomes. Recently,cancer stem cells (CSCs) have been demonstrated to play a role in therapeutic resistance and are considered to be the most likely cause of cancer relapse. The identification of CSCs is an important step toward finding new and effective ways to treat GBM. Tenascin-C (TNC) protein has been identified as a potential marker for CSCs in gliomas based on previous work. Here,we have investigated the expression of TNC in tissue microarrays including 17 GBMs,18 WHO grade III astrocytomas,15 WHO grade II astrocytomas,4 WHO grade I astrocytomas,and 7 normal brain tissue samples by immunohistochemical staining. TNC expression was found to be highly associated with the grade of astrocytoma. It has a high expression level in most of the grade III astrocytomas and GBMs analyzed and a very low expression in most grade II astrocytomas,whereas it is undetectable in grade I astrocytomas and normal brain tissues. Double-immunofluorescence staining for TNC and CD133 in GBM tissues revealed that there was a high overlap between theses two positive populations. The results were further confirmed by flow cytometry analysis of TNC and CD133 in GBM-derived stem-like neurospheres in vitro. A limiting dilution assay demonstrated that the sphere formation ability of CD133(+)/TNC(+) and CD133(-)/TNC(+) cell populations is much higher than that of the CD133(+)/TNC(-) and CD133(-)/TNC(-) populations. These results suggest that TNC is not only a potential prognostic marker for GBM but also a potential marker for glioma CSCs,where the TNC(+) population is identified as a CSC population overlapping with part of the CD133(-) cell population.
View Publication
产品类型:
产品号#:
05750
05751
05752
产品名:
NeuroCult™ NS-A 基础培养基(人)
NeuroCult™ NS-A 扩增试剂盒(人)
NeuroCult™ NS-A 分化试剂盒(人)
文献
Pollak J et al. (MAR 2017)
PLOS ONE 12 3 e0172884
Ion channel expression patterns in glioblastoma stem cells with functional and therapeutic implications for malignancy
Ion channels and transporters have increasingly recognized roles in cancer progression through the regulation of cell proliferation,migration,and death. Glioblastoma stem-like cells (GSCs) are a source of tumor formation and recurrence in glioblastoma multiforme,a highly aggressive brain cancer,suggesting that ion channel expression may be perturbed in this population. However,little is known about the expression and functional relevance of ion channels that may contribute to GSC malignancy. Using RNA sequencing,we assessed the enrichment of ion channels in GSC isolates and non-tumor neural cell types. We identified a unique set of GSC-enriched ion channels using differential expression analysis that is also associated with distinct gene mutation signatures. In support of potential clinical relevance,expression of selected GSC-enriched ion channels evaluated in human glioblastoma databases of The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project correlated with patient survival times. Finally,genetic knockdown as well as pharmacological inhibition of individual or classes of GSC-enriched ion channels constrained growth of GSCs compared to normal neural stem cells. This first-in-kind global examination characterizes ion channels enriched in GSCs and explores their potential clinical relevance to glioblastoma molecular subtypes,gene mutations,survival outcomes,regional tumor expression,and experimental responses to loss-of-function. Together,the data support the potential biological and therapeutic impact of ion channels on GSC malignancy and provide strong rationale for further examination of their mechanistic and therapeutic importance.
View Publication
产品类型:
产品号#:
05751
产品名:
NeuroCult™ NS-A 扩增试剂盒(人)
文献
Artyukhov AS et al. (MAY 2017)
Gene
New genes for accurate normalization of qRT-PCR results in study of iPS and iPS-derived cells.
iPSC-derived cells (from induced pluripotent stem cells) are a useful source that provide a powerful and widely accepted tool for the study of various types of human cells in vitro. Indeed,iPSC-derived cells from patients with hereditary diseases have been shown to reproduce the hallmarks of these diseases in vitro,phenotypes that can then also be manipulated in vitro. Quantitative reverse transcription PCR (qRT-PCR) is often used to characterize the progress of iPSC differentiation,validate mature cell types and to determine levels of pathological markers. Quantitative reverse transcription PCR (qRT-PCR) is used to quantify mRNA levels. This method requires some way of normalizing the data,typically by relating the obtained levels of gene expression to the levels of expression of a house keeping gene"�
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Lungova V et al. ( 2014)
1307 237--243
Derivation of Epithelial Cells from Human Embryonic Stem Cells as an In Vitro Model of Vocal Mucosa
Vocal fold epithelial cells are very difficult to study as the vocal fold epithelial cell lines do not exist and they cannot be removed from the healthy larynx without engendering a significant and unacceptable risk to vocal fold function. Here,we describe the procedure to create an engineered vocal fold tissue construct consisting of the scaffold composed of the collagen 1 gel seeded with human fibroblasts and simple epithelial progenitors seeded on the scaffold and cultivated at air-liquid interface for 19-21 days to derive the stratified squamous epithelium. This model of vocal fold mucosa is very similar in morphology,gene expression,and phenotypic characteristics to native vocal fold epithelial cells and the underlying lamina propria and,therefore,offers a promising approach to studying vocal fold biology and biomechanics in health and disease.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Sivarapatna A et al. (JUN 2015)
Biomaterials 53 621--633
Arterial specification of endothelial cells derived from human induced pluripotent stem cells in a biomimetic flow bioreactor.
Endothelial cells (ECs) exist in different microenvironments in vivo,including under different levels of shear stress in arteries versus veins. Standard stem cell differentiation protocols to derive ECs and EC-subtypes from human induced pluripotent stem cells (hiPSCs) generally use growth factors or other soluble factors in an effort to specify cell fate. In this study,a biomimetic flow bioreactor was used to subject hiPSC-derived ECs (hiPSC-ECs) to shear stress to determine the impacts on phenotype and upregulation of markers associated with an anti-thrombotic,anti-inflammatory,arterial-like phenotype. The in vitro bioreactor system was able to efficiently mature hiPSC-ECs into arterial-like cells in 24 h,as demonstrated by qRT-PCR for arterial markers EphrinB2,CXCR4,Conexin40 and Notch1,as well protein-level expression of Notch1 intracellular domain (NICD). Furthermore,the exogenous addition of soluble factors was not able to fully recapitulate this phenotype that was imparted by shear stress exposure. The induction of these phenotypic changes was biomechanically mediated in the shear stress bioreactor. This biomimetic flow bioreactor is an effective means for the differentiation of hiPSC-ECs toward an arterial-like phenotype,and is amenable to scale-up for culturing large quantities of cells for tissue engineering applications.
View Publication
产品类型:
产品号#:
07913
07920
85850
85857
产品名:
Dispase(5 U/mL)
ACCUTASE™
mTeSR™1
mTeSR™1
文献
Nguyen KD et al. (NOV 2009)
American journal of respiratory and critical care medicine 180 9 823--33
Impaired IL-10-dependent induction of tolerogenic dendritic cells by CD4+CD25hiCD127lo/- natural regulatory T cells in human allergic asthma.
RATIONALE: Tolerogenic dendritic cells and natural regulatory T cells have been implicated in the process of infectious tolerance in human allergic asthma. However,the significance of the influence of natural regulatory T cells on tolerogenic dendritic cells in the disease has not been investigated. OBJECTIVES: We aimed to characterize the mechanism of induction of the tolerogenic phenotype in circulating blood dendritic cells by allergic asthmatic natural regulatory T cells. METHODS: The study was performed in a cohort of 21 subjects with allergic asthma,21 healthy control subjects,and 21 subjects with nonallergic asthma. We cultured blood dendritic cells with natural regulatory T cells to study the induction of tolerogenic dendritic cells. Flow cytometry and proliferation assays were employed to analyze phenotype and function of dendritic cells as well as IL-10 production from natural regulatory T cells. MEASUREMENTS AND MAIN RESULTS: Dendritic cells cultured with natural regulatory T cells up-regulated IL-10,down-regulated costimulatory molecules,and stimulated the proliferation of CD4(+)CD25(-) effector T cells less potently. Allergic asthmatic natural regulatory T cells were significantly less efficient in inducing this tolerogenic phenotype of dendritic cells compared with healthy control and nonallergic asthmatic counterparts. Furthermore,this defective function of natural regulatory T cells was associated with their decreased IL-10 expression,disease severity,and could be reversed by oral corticosteroid therapy. CONCLUSIONS: These results provided the first evidences of impaired induction of tolerogenic dendritic cells mediated by natural regulatory T cells in human allergic asthma.
View Publication
产品类型:
产品号#:
15022
15062
产品名:
RosetteSep™人CD4+ T细胞富集抗体混合物
RosetteSep™人CD4+ T细胞富集抗体混合物
文献
Kurita R et al. (SEP 2006)
Stem cells (Dayton,Ohio) 24 9 2014--22
Tal1/Scl gene transduction using a lentiviral vector stimulates highly efficient hematopoietic cell differentiation from common marmoset (Callithrix jacchus) embryonic stem cells.
The development of embryonic stem cell (ESC) therapies requires the establishment of efficient methods to differentiate ESCs into specific cell lineages. Here,we report the in vitro differentiation of common marmoset (CM) (Callithrix jacchus) ESCs into hematopoietic cells after exogenous gene transfer using vesicular stomatitis virus-glycoprotein-pseudotyped lentiviral vectors. We transduced hematopoietic genes,including tal1/scl,gata1,gata2,hoxB4,and lhx2,into CM ESCs. By immunochemical and morphological analyses,we demonstrated that overexpression of tal1/scl,but not the remaining genes,dramatically increased hematopoiesis of CM ESCs,resulting in multiple blood-cell lineages. Furthermore,flow cytometric analysis demonstrated that CD34,a hematopoietic stem/progenitor cell marker,was highly expressed in tal1/scl-overexpressing embryoid body cells. Similar results were obtained from three independent CM ESC lines. These results suggest that transduction of exogenous tal1/scl cDNA into ESCs is a promising method to induce the efficient differentiation of CM ESCs into hematopoietic stem/progenitor cells.
View Publication
产品类型:
产品号#:
03434
03444
04435
04445
产品名:
MethoCult™GF M3434
MethoCult™GF M3434
MethoCult™H4435富集
MethoCult™H4435富集
文献
Kurtz J et al. (SEP 2007)
Transfusion 47 9 1578--87
Assessment of cord blood hematopoietic cell parameters before and after cryopreservation.
BACKGROUND: The testing of cord blood (CB) progenitor and stem cell units for transplantation suitability involves enumeration of total nucleated cells before freezing. CD34+ cell counts may also be a means of determining suitability. Studies have been conducted to evaluate how specific storage conditions influence cell counts. STUDY DESIGN AND METHODS: CB units were processed by hydroxyethyl starch volume reduction. Cryopreserved-thawed samples were diluted 1:3 without washing. CD34+ cells were measured with three commercially available assay methods. In specific studies,apoptosis-indicating reagents were included. CB units were analyzed for nucleated cells,aldehyde dehydrogenase-containing cells,and progenitor colonies. RESULTS: CD34+ cell levels and nucleated cells were retained during storage in test tubes at 1 to 6 degrees C for 3 days. Cryopreserved-thawed samples showed a reduction in CD34+ cells relative to prefreeze levels with the largest decrease with the Stem-Kit (Beckman Coulter) restricted gating procedure. Prefreeze samples contained minimal numbers of presumed apoptotic cells detected with 7-aminoactinomycin D or SYTO16,but after cryopreservation-thawing there was an increase. Nucleated cell levels determined with a hematology analyzer or flow cytometry were reduced after thawing. Cryopreservation-thawing reduced the percentage of CD34+ cells positive for the presence of aldehyde dehydrogenase and the number of progenitor colonies. These differences were significant. CONCLUSION: These studies indicate that CD34+ cell counts were maintained when CB samples were stored at 1 to 6 degrees C in test tubes for 3 days. Cryopreservation-thawing resulted in changes in a number of parameters including the percentage of CD34+ cells that were aldehyde dehydrogenase(+) and the number of 7-aminoactinomycin D(+) cells and SYTO16(low) cells.
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™工具
ALDEFLUOR™DEAB试剂
文献
Halene S et al. (SEP 2010)
Blood 116 11 1942--50
Serum response factor is an essential transcription factor in megakaryocytic maturation.
Serum response factor (Srf) is a MADS-box transcription factor that is critical for muscle differentiation. Its function in hematopoiesis has not yet been revealed. Mkl1,a cofactor of Srf,is part of the t(1;22) translocation in acute megakaryoblastic leukemia,and plays a critical role in megakaryopoiesis. To test the role of Srf in megakaryocyte development,we crossed Pf4-Cre mice,which express Cre recombinase in cells committed to the megakaryocytic lineage,to Srf(F/F) mice in which functional Srf is no longer expressed after Cre-mediated excision. Pf4-Cre/Srf(F/F) knockout (KO) mice are born with normal Mendelian frequency,but have significant macrothrombocytopenia with approximately 50% reduction in platelet count. In contrast,the BM has increased number and percentage of CD41(+) megakaryocytes (WT: 0.41% ± 0.06%; KO: 1.92% ± 0.12%) with significantly reduced ploidy. KO mice show significantly increased megakaryocyte progenitors in the BM by FACS analysis and CFU-Mk. Megakaryocytes lacking Srf have abnormal stress fiber and demarcation membrane formation,and platelets lacking Srf have abnormal actin distribution. In vitro and in vivo assays reveal platelet function defects in KO mice. Critical actin cytoskeletal genes are down-regulated in KO megakaryocytes. Thus,Srf is required for normal megakaryocyte maturation and platelet production partly because of regulation of cytoskeletal genes.
View Publication