Ghezzi S et al. (APR 2017)
Antiviral research 140 13--17
Heparin prevents Zika virus induced-cytopathic effects in human neural progenitor cells.
The recent Zika virus (ZIKV) outbreak,which mainly affected Brazil and neighbouring states,demonstrated the paucity of information concerning the epidemiology of several flaviruses,but also highlighted the lack of available agents with which to treat such emerging diseases. Here,we show that heparin,a widely used anticoagulant,while exerting a modest inhibitory effect on Zika Virus replication,fully prevents virus-induced cell death of human neural progenitor cells (NPCs).
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
G. La Manno et al. (OCT 2016)
Cell 167 2 566--580.e19
Molecular Diversity of Midbrain Development in Mouse, Human, and Stem Cells.
Understanding human embryonic ventral midbrain is of major interest for Parkinson's disease. However,the cell types,their gene expression dynamics,and their relationship to commonly used rodent models remain to be defined. We performed single-cell RNA sequencing to examine ventral midbrain development in human and mouse. We found 25 molecularly defined human cell types,including five subtypes of radial glia-like cells and four progenitors. In the mouse,two mature fetal dopaminergic neuron subtypes diversified into five adult classes during postnatal development. Cell types and gene expression were generally conserved across species,but with clear differences in cell proliferation,developmental timing,and dopaminergic neuron development. Additionally,we developed a method to quantitatively assess the fidelity of dopaminergic neurons derived from human pluripotent stem cells,at a single-cell level. Thus,our study provides insight into the molecular programs controlling human midbrain development and provides a foundation for the development of cell replacement therapies.
View Publication
产品类型:
产品号#:
产品名:
文献
C. A. Egelston et al. (OCT 2018)
Nature communications 9 1 4297
Human breast tumor-infiltrating CD8+ T cells retain polyfunctionality despite PD-1 expression.
Functional CD8+ T cells in human tumors play a clear role in clinical prognosis and response to immunotherapeutic interventions. PD-1 expression in T cells involved in chronic infections and tumors such as melanoma often correlates with a state of T-cell exhaustion. Here we interrogate CD8+ tumor-infiltrating lymphocytes (TILs) from human breast and melanoma tumors to explore their functional state. Despite expression of exhaustion hallmarks,such as PD-1 expression,human breast tumor CD8+ TILs retain robust capacity for production of effector cytokines and degranulation capacity. In contrast,melanoma CD8+ TILs display dramatic reduction of cytokine production and degranulation capacity. We show that CD8+ TILs from human breast tumors can potently kill cancer cells via bi-specific antibodies. Our data demonstrate that CD8+ TILs in human breast tumors retain polyfunctionality,despite PD-1 expression,and suggest that they may be harnessed for effective immunotherapies.
View Publication
产品类型:
产品号#:
17853
17853RF
19159
19159RF
产品名:
EasySep™人CD8正选试剂盒 II
RoboSep™ 人CD8正选试剂盒 II
EasySep™人记忆CD8+ T细胞富集试剂盒
RoboSep™ 人记忆CD8+ T细胞富集试剂盒
文献
Gasparetto M et al. (OCT 2012)
Experimental hematology 40 10 857--66.e5
Varying levels of aldehyde dehydrogenase activity in adult murine marrow hematopoietic stem cells are associated with engraftment and cell cycle status.
Aldehyde dehydrogenase (ALDH) activity is a widely used marker for human hematopoietic stem cells (HSCs),yet its relevance and role in murine HSCs remain unclear. We found that murine marrow cells with a high level of ALDH activity as measured by Aldefluor staining (ALDH(br) cells) do not contain known HSCs or progenitors. In contrast,highly enriched murine HSCs defined by the CD48(-)EPCR(+) and other phenotypes contain two subpopulations,one that stains dimly with Aldefluor (ALDH(dim)) and one that stains at intermediate levels (ALDH(int)). The CD48(-)EPCR(+)ALDH(dim) cells are virtually all in G(0) and yield high levels of engraftment via both intravenous and intrabone routes. In contrast the CD48(-)EPCR(+)ALDH(int) cells are virtually all in G(1),have little intravenous engraftment potential,and yet can engraft long-term after intrabone transplantation. These data demonstrate that Aldefluor staining of unfractionated murine marrow does not identify known HSCs or progenitors. However,varying levels of Aldefluor staining when combined with CD48 and EPCR detection can identify novel populations in murine marrow including a highly enriched population of resting HSCs and a previously unknown HSC population in G(1) with an intravenous engraftment defect.
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™工具
ALDEFLUOR™DEAB试剂
文献
Leonova KI et al. (APR 2010)
Cell cycle (Georgetown,Tex.) 9 7 1434--43
A small molecule inhibitor of p53 stimulates amplification of hematopoietic stem cells but does not promote tumor development in mice.
It has been shown that genetic inhibition of p53 leads to enhanced proliferation of hematopoietic stem cells (HSCs). This could,in theory,contribute to the increased frequency of tumor development observed in p53-deficient mice and humans. In our previous work,we identified chemical p53 inhibitors (PFTs) that suppress the transactivation function of p53 and protect cultured cells and mice from death induced by gamma irradiation (IR). Here we found that when applied to bone marrow cells in vitro or injected into mice,PFTb impeded IR-induced reduction of hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC) population sizes. In addition,we showed that PFTb stimulated HSC and HPC proliferation in the absence of IR in vitro and in vivo and mobilized HSCs to the peripheral blood. Importantly,however,PFTb treatment did not affect the timing or frequency of tumor development in irradiated p53 heterozygous mice used as a model for determination of carcinogenicity. Thus,although PFTb administration led to increased numbers of HSCs and HPCs,it was not carcinogenic in mice. These findings suggest that chemical p53 inhibitors may be clinically useful as safe and effective stimulators of hematopoiesis.
View Publication
产品类型:
产品号#:
72062
72064
产品名:
环状 Pifithrin-α(Cyclic Pifithrin-Alpha)
环状 Pifithrin-α (Hydrobromide)
文献
Lai W-H et al. (MAR 2013)
PLoS ONE 8 3 e57876
Attenuation of Hind-Limb Ischemia in Mice with Endothelial-Like Cells Derived from Different Sources of Human Stem Cells
Functional endothelial-like cells (EC) have been successfully derived from different cell sources and potentially used for treatment of cardiovascular diseases; however,their relative therapeutic efficacy remains unclear. We differentiated functional EC from human bone marrow mononuclear cells (BM-EC),human embryonic stem cells (hESC-EC) and human induced pluripotent stem cells (hiPSC-EC),and compared their in-vitro tube formation,migration and cytokine expression profiles,and in-vivo capacity to attenuate hind-limb ischemia in mice. Successful differentiation of BM-EC was only achieved in 1/6 patient with severe coronary artery disease. Nevertheless,BM-EC,hESC-EC and hiPSC-EC exhibited typical cobblestone morphology,had the ability of uptaking DiI-labeled acetylated low-density-lipoprotein,and binding of Ulex europaeus lectin. In-vitro functional assay demonstrated that hiPSC-EC and hESC-EC had similar capacity for tube formation and migration as human umbilical cord endothelial cells (HUVEC) and BM-EC (Ptextgreater0.05). While increased expression of major angiogenic factors including epidermal growth factor,hepatocyte growth factor,vascular endothelial growth factor,placental growth factor and stromal derived factor-1 were observed in all EC cultures during hypoxia compared with normoxia (Ptextless0.05),the magnitudes of cytokine up-regulation upon hypoxic were more dramatic in hiPSC-EC and hESC-EC (Ptextless0.05). Compared with medium,transplanting BM-EC (n = 6),HUVEC (n = 6),hESC-EC (n = 8) or hiPSC-EC (n = 8) significantly attenuated severe hind-limb ischemia in mice via enhancement of neovascularization. In conclusion,functional EC can be generated from hECS and hiPSC with similar therapeutic efficacy for attenuation of severe hind-limb ischemia. Differentiation of functional BM-EC was more difficult to achieve in patients with cardiovascular diseases,and hESC-EC or iPSC-EC are readily available as off-the-shelf" format for the treatment of tissue ischemia."
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Zhang Y et al. (JUN 2013)
Blood 121 24 4906--16
AML1-ETO mediates hematopoietic self-renewal and leukemogenesis through a COX/β-catenin signaling pathway.
Developing novel therapies that suppress self-renewal of leukemia stem cells may reduce the likelihood of relapses and extend long-term survival of patients with acute myelogenous leukemia (AML). AML1-ETO (AE) is an oncogene that plays an important role in inducing self-renewal of hematopoietic stem/progenitor cells (HSPCs),leading to the development of leukemia stem cells. Previously,using a zebrafish model of AE and a whole-organism chemical suppressor screen,we have discovered that AE induces specific hematopoietic phenotypes in embryonic zebrafish through a cyclooxygenase (COX)-2 and β-catenin-dependent pathway. Here,we show that AE also induces expression of the Cox-2 gene and activates β-catenin in mouse bone marrow cells. Inhibition of COX suppresses β-catenin activation and serial replating of AE(+) mouse HSPCs. Genetic knockdown of β-catenin also abrogates the clonogenic growth of AE(+) mouse HSPCs and human leukemia cells. In addition,treatment with nimesulide,a COX-2 selective inhibitor,dramatically suppresses xenograft tumor formation and inhibits in vivo progression of human leukemia cells. In summary,our data indicate an important role of a COX/β-catenin-dependent signaling pathway in tumor initiation,growth,and self-renewal,and in providing the rationale for testing potential benefits from common COX inhibitors as a part of AML treatments.
View Publication
产品类型:
产品号#:
产品名:
文献
He H et al. (OCT 2012)
Blood 120 15 3152--62
Endothelial cells provide an instructive niche for the differentiation and functional polarization of M2-like macrophages.
Endothelial cells and macrophages are known to engage in tight and specific interactions that contribute to the modulation of vascular function. Here we show that adult endothelial cells provide critical signals for the selective growth and differentiation of macrophages from several hematopoietic progenitors. The process features the formation of well-organized colonies that exhibit progressive differentiation from the center to the periphery and toward an M2-like phenotype,characterized by enhanced expression of Tie2 and CD206/Mrc1. These colonies are long-lived depending on the contact with the endothelium; removal of the endothelial monolayer results in rapid colony dissolution. We further found that Csf1 produced by the endothelium is critical for the expansion of the macrophage colonies and that blockade of Csf1 receptor impairs colony growth. Functional analyses indicate that these macrophages are capable of accelerating angiogenesis,promoting tumor growth,and effectively engaging in tight associations with endothelial cells in vivo. These findings uncover a critical role of endothelial cells in the induction of macrophage differentiation and their ability to promote further polarization toward a proangiogenic phenotype. This work also highlights some of the molecules underlying the M2-like differentiation,a process that is relevant to the progression of both developmental and pathologic angiogenesis.
View Publication
产品类型:
产品号#:
72472
72474
产品名:
GW2580
GW2580
文献
Ayasoufi K et al. (APR 2016)
Journal of Immunology 196 7 3180--90
CD4 T Cell Help via B Cells Is Required for Lymphopenia-Induced CD8 T Cell Proliferation.
Ab-mediated lymphoablation is commonly used in solid organ and hematopoietic cell transplantation. However,these strategies fail to control pathogenic memory T cells efficiently and to improve long-term transplant outcomes significantly. Understanding the mechanisms of T cell reconstitution is critical for enhancing the efficacy of Ab-mediated depletion in sensitized recipients. Using a murine analog of anti-thymocyte globulin (mATG) in a mouse model of cardiac transplantation,we previously showed that peritransplant lymphocyte depletion induces rapid memory T cell proliferation and only modestly prolongs allograft survival. We now report that T cell repertoire following depletion is dominated by memory CD4 T cells. Additional depletion of these residual CD4 T cells severely impairs the recovery of memory CD8 T cells after mATG treatment. The CD4 T cell help during CD8 T cell recovery depends on the presence of B cells expressing CD40 and intact CD40/CD154 interactions. The requirement for CD4 T cell help is not limited to the use of mATG in heart allograft recipients,and it is observed in nontransplanted mice and after CD8 T cell depletion with mAb instead of mATG. Most importantly,limiting helper signals increases the efficacy of mATG in controlling memory T cell expansion and significantly extends heart allograft survival in sensitized recipients. Our findings uncover the novel role for helper memory CD4 T cells during homeostatic CD8 T cell proliferation and open new avenues for optimizing lymphoablative therapies in allosensitized patients.
View Publication
产品类型:
产品号#:
19851
19851RF
产品名:
EasySep™小鼠T细胞分选试剂盒
RoboSep™ 小鼠T细胞分选试剂盒
文献
Kuç et al. (FEB 2003)
Blood 101 3 869--76
Identification of a novel class of human adherent CD34- stem cells that give rise to SCID-repopulating cells.
Here we describe the in vitro generation of a novel adherent cell fraction derived from highly enriched,mobilized CD133(+) peripheral blood cells after their culture with Flt3/Flk2 ligand and interleukin-6 for 3 to 5 weeks. These cells lack markers of hematopoietic stem cells,endothelial cells,mesenchymal cells,dendritic cells,and stromal fibroblasts. However,all adherent cells expressed the adhesion molecules VE-cadherin,CD54,and CD44. They were also positive for CD164 and CD172a (signal regulatory protein-alpha) and for a stem cell antigen defined by the recently described antibody W7C5. Adherent cells can either spontaneously or upon stimulation with stem cell factor give rise to a transplantable,nonadherent CD133(+)CD34(-) stem cell subset. These cells do not generate in vitro hematopoietic colonies. However,their transplantation into nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice induced substantially higher long-term multilineage engraftment compared with that of freshly isolated CD34(+) cells,suggesting that these cells are highly enriched in SCID-repopulating cells. In addition to cells of the myeloid lineage,nonadherent CD34(-) cells were able to give rise to human cells with B-,T-,and natural killer-cell phenotype. Hence,these cells possess a distinct in vivo differentiation potential compared with that of CD34(+) stem cells and may therefore provide an alternative to CD34(+) progenitor cells for transplantation.
View Publication
产品类型:
产品号#:
09500
09600
09650
产品名:
BIT 9500血清替代物
StemSpan™ SFEM
StemSpan™ SFEM
文献
Kennah E et al. (MAY 2009)
Blood 113 19 4646--55
Identification of tyrosine kinase, HCK, and tumor suppressor, BIN1, as potential mediators of AHI-1 oncogene in primary and transformed CTCL cells.
AHI-1 is an oncogene often targeted by provirus insertional mutagenesis in murine leukemias and lymphomas. Aberrant expression of human AHI-1 occurs in cutaneous T-cell lymphoma (CTCL) cells and in CD4(+)CD7(-) Sezary cells from patients with Sezary syndrome. Stable knockdown of AHI-1 using retroviral-mediated RNA interference in CTCL cells inhibits their transforming activity in vitro and in vivo. To identify genes involved in AHI-1-mediated transformation,microarray analysis was performed to identify differentially expressed genes in AHI-1-suppressed CTCL cells. Fifteen up-regulated and 6 down-regulated genes were identified and confirmed by quantitative reverse transcription-polymerase chain reaction. Seven were further confirmed in a microarray analysis of CD4(+)CD7(-) Sezary cells from Sezary syndrome patients. HCK and BIN1 emerged as new candidate cooperative genes,with differential protein expression,which correlates with observed transcript changes. Interestingly,changes in HCK phosphorylation and biologic response to its inhibitor,dasatinib,were observed in AHI-1-suppressed or -overexpressed cells. The tumor suppressor BIN1 physically interacts with MYC in CTCL cells,which also exhibit differential MYC protein expression. In addition,aberrant expression of alternative splicing forms of BIN1 was observed in primary and transformed CTCL cells. These findings indicate that HCK and BIN1 may play critical roles in AHI-1-mediated leukemic transformation of human CTCL cells.
View Publication
产品类型:
产品号#:
15021
15061
产品名:
RosetteSep™人T细胞富集抗体混合物
RosetteSep™人T细胞富集抗体混合物
文献
Bhinge A et al. (JAN 2016)
Stem cells (Dayton,Ohio) 34 1 124--134
MiR-375 is Essential for Human Spinal Motor Neuron Development and May Be Involved in Motor Neuron Degeneration.
The transcription factor REST is a key suppressor of neuronal genes in non-neuronal tissues. REST has been shown to suppress proneuronal microRNAs in neural progenitors indicating that REST-mediated neurogenic suppression may act in part via microRNAs. We used neural differentiation of Rest-null mouse ESC to identify dozens of microRNAs regulated by REST during neural development. One of the identified microRNAs,miR-375,was upregulated during human spinal motor neuron development. We found that miR-375 facilitates spinal motor neurogenesis by targeting the cyclin kinase CCND2 and the transcription factor PAX6. Additionally,miR-375 inhibits the tumor suppressor p53 and protects neurons from apoptosis in response to DNA damage. Interestingly,motor neurons derived from a spinal muscular atrophy patient displayed depressed miR-375 expression and elevated p53 protein levels. Importantly,SMA motor neurons were significantly more susceptible to DNA damage induced apoptosis suggesting that miR-375 may play a protective role in motor neurons.
View Publication