Doyle LA et al. (DEC 1998)
Proceedings of the National Academy of Sciences of the United States of America 95 26 15665--70
A multidrug resistance transporter from human MCF-7 breast cancer cells.
MCF-7/AdrVp is a multidrug-resistant human breast cancer subline that displays an ATP-dependent reduction in the intracellular accumulation of anthracycline anticancer drugs in the absence of overexpression of known multidrug resistance transporters such as P glycoprotein or the multidrug resistance protein. RNA fingerprinting led to the identification of a 2.4-kb mRNA that is overexpressed in MCF-7/AdrVp cells relative to parental MCF-7 cells. The mRNA encodes a 655-aa [corrected] member of the ATP-binding cassette superfamily of transporters that we term breast cancer resistance protein (BCRP). Enforced expression of the full-length BCRP cDNA in MCF-7 breast cancer cells confers resistance to mitoxantrone,doxorubicin,and daunorubicin,reduces daunorubicin accumulation and retention,and causes an ATP-dependent enhancement of the efflux of rhodamine 123 in the cloned transfected cells. BCRP is a xenobiotic transporter that appears to play a major role in the multidrug resistance phenotype of MCF-7/AdrVp human breast cancer cells.
View Publication
产品类型:
产品号#:
产品名:
文献
M. K. Dame et al. (FEB 2018)
Development (Cambridge,England) 145 6
Identification, isolation and characterization of human LGR5-positive colon adenoma cells.
The intestine is maintained by stem cells located at the base of crypts and distinguished by the expression of LGR5. Genetically engineered mouse models have provided a wealth of information about intestinal stem cells,whereas less is known about human intestinal stem cells owing to difficulty detecting and isolating these cells. We established an organoid repository from patient-derived adenomas,adenocarcinomas and normal colon,which we analyzed for variants in 71 colorectal cancer (CRC)-associated genes. Normal and neoplastic colon tissue organoids were analyzed by immunohistochemistry and fluorescent-activated cell sorting for LGR5. LGR5-positive cells were isolated from four adenoma organoid lines and were subjected to RNA sequencing. We found that LGR5 expression in the epithelium and stroma was associated with tumor stage,and by integrating functional experiments with LGR5-sorted cell RNA sequencing data from adenoma and normal organoids,we found correlations between LGR5 and CRC-specific genes,including dickkopf WNT signaling pathway inhibitor 4 (DKK4) and SPARC-related modular calcium binding 2 (SMOC2). Collectively,this work provides resources,methods and new markers to isolate and study stem cells in human tissue homeostasis and carcinogenesis.
View Publication
产品类型:
产品号#:
产品名:
文献
Zhu F et al. (SEP 2014)
Stem cells and development 23 17 2119--2125
A modified method for implantation of pluripotent stem cells under the rodent kidney capsule.
Teratoma formation,the standard in vivo pluripotency assay,is also frequently used as a tumorigenicity assay. A common concern in therapeutic stem cell applications is the tumorigenicity potential of a small number of cell impurities in the final product. Estimation of this small number is hampered by the inaccurate methodology of the tumorigenicity assay. Hence,a protocol for tumorigenicity assay that can deliver a defined number of cells,without error introduced by leakage or migration of cells is needed. In this study,we tested our modified transplantation method that allows for transplant of small numbers of pluripotent stem cells (PSCs) under the kidney capsule with minimal cell leakage. A glass capillary with a finely shaped tip and an attached mouth pipette was used to inject PSCs into the rodent kidney capsule. H9 embryonic and induced PSCs were tagged with Fluc and green fluorescence protein reporter genes and divided in different cell doses for transplantation. Bioluminescence imaging (BLI) on the day of surgery showed that the cell signal was confined to the kidney and signal intensity correlated with increasing transplant cell numbers. The overall cell leakage rate was 17% and the rodent survival rate was 96%. Teratoma formation was observed in rodents transplanted with cell numbers between 1 × 10(5)-2 × 10(6). We conclude that this modified procedure for transplanting PSCs under the kidney capsule allows for transplantation of a defined number of PSCs with significant reduction of error associated with cell leakage from the transplant site.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Lin H et al. (JAN 2017)
Neuro-oncology 19 1 43--54
Fatty acid oxidation is required for the respiration and proliferation of malignant glioma cells.
BACKGROUND Glioma is the most common form of primary malignant brain tumor in adults,with approximately 4 cases per 100 000 people each year. Gliomas,like many tumors,are thought to primarily metabolize glucose for energy production; however,the reliance upon glycolysis has recently been called into question. In this study,we aimed to identify the metabolic fuel requirements of human glioma cells. METHODS We used database searches and tissue culture resources to evaluate genotype and protein expression,tracked oxygen consumption rates to study metabolic responses to various substrates,performed histochemical techniques and fluorescence-activated cell sorting-based mitotic profiling to study cellular proliferation rates,and employed an animal model of malignant glioma to evaluate a new therapeutic intervention. RESULTS We observed the presence of enzymes required for fatty acid oxidation within human glioma tissues. In addition,we demonstrated that this metabolic pathway is a major contributor to aerobic respiration in primary-cultured cells isolated from human glioma and grown under serum-free conditions. Moreover,inhibiting fatty acid oxidation reduces proliferative activity in these primary-cultured cells and prolongs survival in a syngeneic mouse model of malignant glioma. CONCLUSIONS Fatty acid oxidation enzymes are present and active within glioma tissues. Targeting this metabolic pathway reduces energy production and cellular proliferation in glioma cells. The drug etomoxir may provide therapeutic benefit to patients with malignant glioma. In addition,the expression of fatty acid oxidation enzymes may provide prognostic indicators for clinical practice.
View Publication
产品类型:
产品号#:
05750
05751
产品名:
NeuroCult™ NS-A 基础培养基(人)
NeuroCult™ NS-A 扩增试剂盒(人)
文献
Orlova VV et al. ( 2014)
1213 1213 107--119
Assessment of functional competence of endothelial cells from human pluripotent stem cells in zebrafish embryos.
Human pluripotent stem cells (hPSCs) are proving to be a valuable source of endothelial cells (ECs),pericytes,and vascular smooth muscle cells (vSMCs). Although an increasing number of phenotypic markers are becoming available to determine the phenotypes of these cells in vitro,the ability to integrate and form functional vessels in the host organism,typically mouse,remains critical for the assessment of EC functional competence. However,current mouse models require relatively large numbers of cells that might be difficult to derive simultaneously from multiple hPSCs lines. Therefore,there is an urgent need for new functional assays that are robust and can be performed with small numbers of cells. Here we describe a novel zebrafish xenograft model to test functionality of hPSC-derived ECs. The assay can be performed in 10 days and requires only ˜100-400 human cells per embryo. Thus,the zebrafish xenograft model can be useful for the accurate and rapid assessment of functionality of hPSC-derived ECs in a lower vertebrate model that is widely viewed by regulatory authorities as a more acceptable alternative to adult mice.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Wang X et al. (FEB 2016)
Stem cells (Dayton,Ohio) 34 2 380--391
Immune modulatory mesenchymal stem cells derived from human embryonic stem cells through a trophoblast-like stage.
Mesenchymal stem/stromal cells (MSCs) have great clinical potential in modulating inflammation and promoting tissue repair. Human embryonic stem cells (hESCs) have recently emerged as a potentially superior cell source for MSCs. However,the generation methods reported so far vary greatly in quality and efficiency. Here,we describe a novel method to rapidly and efficiently produce MSCs from hESCs via a trophoblast-like intermediate stage in approximately 11-16 days. We term these cells T-MSCs" and show that T-MSCs express a phenotype and differentiation potential minimally required to define MSCs. T-MSCs exhibit potent immunomodulatory activity in vitro as they can remarkably inhibit proliferation of cocultured T and B lymphocytes. Unlike bone marrow MSCs�
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Chen YS et al. (FEB 2012)
Stem cells translational medicine 1 2 83--95
Small molecule mesengenic induction of human induced pluripotent stem cells to generate mesenchymal stem/stromal cells.
The translational potential of mesenchymal stem/stromal cells (MSCs) is limited by their rarity in somatic organs,heterogeneity,and need for harvest by invasive procedures. Induced pluripotent stem cells (iPSCs) could be an advantageous source of MSCs,but attempts to derive MSCs from pluripotent cells have required cumbersome or untranslatable techniques,such as coculture,physical manipulation,sorting,or viral transduction. We devised a single-step method to direct mesengenic differentiation of human embryonic stem cells (ESCs) and iPSCs using a small molecule inhibitor. First,epithelial-like monolayer cells were generated by culturing ESCs/iPSCs in serum-free medium containing the transforming growth factor-β pathway inhibitor SB431542. After 10 days,iPSCs showed upregulation of mesodermal genes (MSX2,NCAM,HOXA2) and downregulation of pluripotency genes (OCT4,LEFTY1/2). Differentiation was then completed by transferring cells into conventional MSC medium. The resultant development of MSC-like morphology was associated with increased expression of genes,reflecting epithelial-to-mesenchymal transition. Both ESC- and iPSC-derived MSCs exhibited a typical MSC immunophenotype,expressed high levels of vimentin and N-cadherin,and lacked expression of pluripotency markers at the protein level. Robust osteogenic and chondrogenic differentiation was induced in vitro in ES-MSCs and iPS-MSCs,whereas adipogenic differentiation was limited,as reported for primitive fetal MSCs and ES-MSCs derived by other methods. We conclude that treatment with SB431542 in two-dimensional cultures followed by culture-induced epithelial-to-mesenchymal transition leads to rapid and uniform MSC conversion of human pluripotent cells without the need for embryoid body formation or feeder cell coculture,providing a robust,clinically applicable,and efficient system for generating MSCs from human iPSCs.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Kovats S et al. (NOV 2016)
Clinical and experimental immunology 186 2 214--226
West Nile virus-infected human dendritic cells fail to fully activate invariant natural killer T cells.
West Nile virus (WNV) infection is a mosquito-borne zoonosis with increasing prevalence in the United States. WNV infection begins in the skin,and the virus replicates initially in keratinocytes and dendritic cells (DCs). In the skin and cutaneous lymph nodes,infected DCs are likely to interact with invariant natural killer T cells (iNKTs). Bidirectional interactions between DCs and iNKTs amplify the innate immune response to viral infections,thus controlling viral load and regulating adaptive immunity. iNKTs are stimulated by CD1d-bound lipid antigens or activated indirectly by inflammatory cytokines. We exposed human monocyte-derived DCs to WNV Kunjin and determined their ability to activate isolated blood iNKTs. DCs became infected as judged by synthesis of viral mRNA and Envelope and NS-1 proteins,but did not undergo significant apoptosis. Infected DCs up-regulated the co-stimulatory molecules CD86 and CD40,but showed decreased expression of CD1d. WNV infection induced DC secretion of type I interferon (IFN),but no or minimal interleukin (IL)-12,IL-23,IL-18 or IL-10. Unexpectedly,we found that the WNV-infected DCs stimulated human iNKTs to up-regulate CD69 and produce low amounts of IL-10,but not proinflammatory cytokines such as IFN-γ or tumour necrosis factor (TNF)-α. Both CD1d and IFNAR blockade partially abrogated this iNKT response,suggesting involvement of a T cell receptor (TCR)-CD1d interaction and type I interferon receptor (IFNAR) signalling. Thus,WNV infection interferes with DC-iNKT interactions by preventing the production of proinflammatory cytokines. iNKTs may be a source of IL-10 observed in human flavivirus infections and initiate an anti-inflammatory innate response that limits adaptive immunity and immune pathology upon WNV infection.
View Publication
产品类型:
产品号#:
19059
19059RF
产品名:
EasySep™人单核细胞富集试剂盒
RoboSep™ 人单核细胞富集试剂盒含滤芯吸头
文献
Naramura M et al. (SEP 2010)
Proceedings of the National Academy of Sciences of the United States of America 107 37 16274--9
Rapidly fatal myeloproliferative disorders in mice with deletion of Casitas B-cell lymphoma (Cbl) and Cbl-b in hematopoietic stem cells.
Casitas B-cell lymphoma (Cbl)-family E3 ubiquitin ligases are negative regulators of tyrosine kinase signaling. Recent work has revealed a critical role of Cbl in the maintenance of hematopoietic stem cell (HSC) homeostasis,and mutations in CBL have been identified in myeloid malignancies. Here we show that,in contrast to Cbl or Cbl-b single-deficient mice,concurrent loss of Cbl and Cbl-b in the HSC compartment leads to an early-onset lethal myeloproliferative disease in mice. Cbl,Cbl-b double-deficient bone marrow cells are hypersensitive to cytokines,and show altered biochemical response to thrombopoietin. Thus,Cbl and Cbl-b play redundant but essential roles in HSC regulation,whose breakdown leads to hematological abnormalities that phenocopy crucial aspects of mutant Cbl-driven human myeloid malignancies.
View Publication
产品类型:
产品号#:
03234
产品名:
MethoCult™M3234
文献
S. H. Park et al. (may 2019)
Nucleic acids research
Highly efficient editing of the beta-globin gene in patient-derived hematopoietic stem and progenitor cells to treat sickle cell disease.
Sickle cell disease (SCD) is a monogenic disorder that affects millions worldwide. Allogeneic hematopoietic stem cell transplantation is the only available cure. Here,we demonstrate the use of CRISPR/Cas9 and a short single-stranded oligonucleotide template to correct the sickle mutation in the beta-globin gene in hematopoietic stem and progenitor cells (HSPCs) from peripheral blood or bone marrow of patients with SCD,with 24.5 ± 7.6{\%} efficiency without selection. Erythrocytes derived from gene-edited cells showed a marked reduction of sickle cells,with the level of normal hemoglobin (HbA) increased to 25.3 ± 13.9{\%}. Gene-corrected SCD HSPCs retained the ability to engraft when transplanted into non-obese diabetic (NOD)-SCID-gamma (NSG) mice with detectable levels of gene correction 16-19 weeks post-transplantation. We show that,by using a high-fidelity SpyCas9 that maintained the same level of on-target gene modification,the off-target effects including chromosomal rearrangements were significantly reduced. Taken together,our results demonstrate efficient gene correction of the sickle mutation in both peripheral blood and bone marrow-derived SCD HSPCs,a significant reduction in sickling of red blood cells,engraftment of gene-edited SCD HSPCs in vivo and the importance of reducing off-target effects; all are essential for moving genome editing based SCD treatment into clinical practice.
View Publication
产品类型:
产品号#:
04434
04444
产品名:
MethoCult™H4434经典
MethoCult™H4434经典
文献
N. Paiboon et al. ( 2019)
Stem cells international 2019 9748795
Gestational Tissue-Derived Human Mesenchymal Stem Cells Use Distinct Combinations of Bioactive Molecules to Suppress the Proliferation of Human Hepatoblastoma and Colorectal Cancer Cells.
Background Cancer has been considered a serious global health problem and a leading cause of morbidity and mortality worldwide. Despite recent advances in cancer therapy,treatments of advance stage cancers are mostly ineffective resulting in poor survival of patients. Recent evidences suggest that multipotent human mesenchymal stem cells (hMSCs) play important roles in growth and metastasis of several cancers by enhancing their engraftment and inducing tumor neovascularization. However,the effect of hMSCs on cancer cells is still controversial because there are also evidences demonstrating that hMSCs inhibited growth and metastasis of some cancers. Methods In this study,we investigated the effects of bioactive molecules released from bone marrow and gestational tissue-derived hMSCs on the proliferation of various human cancer cells,including C3A,HT29,A549,Saos-2,and U251. We also characterized the hMSC-derived factors that inhibit cancer cell proliferation by protein fractionation and mass spectrometry analysis. Results We herein make a direct comparison and show that the effects of hMSCs on cancer cell proliferation and migration depend on both hMSC sources and cancer cell types and cancer-derived bioactive molecules did not affect the cancer suppressive capacity of hMSCs. Moreover,hMSCs use distinct combination of bioactive molecules to suppress the proliferation of human hepatoblastoma and colorectal cancer cells. Using protein fractionation and mass spectrometry analysis,we have identified several novel hMSC-derived factors that might be able to suppress cancer cell proliferation. Conclusion We believe that the procedure developed in this study could be used to discover other therapeutically useful molecules released by various hMSC sources for a future in vivo study.
View Publication
产品类型:
产品号#:
05445
05448
产品名:
MesenCult™ -ACF Plus培养基
MesenCult™-ACF Plus培养试剂盒
文献
Lai W-H et al. (DEC 2010)
Cellular reprogramming 12 6 641--653
ROCK inhibition facilitates the generation of human-induced pluripotent stem cells in a defined, feeder-, and serum-free system.
Human-induced pluripotent stem cells (iPSCs) generated from human adult somatic cells through reprogramming hold great promises for future regenerative medicine. However,exposure of human iPSCs to animal feeder and serum in the process of their generation and maintenance imposes risk of transmitting animal pathogens to human subjects,thus hindering the potential therapeutic applications. Here,we report the successful generation of human iPSCs in a feeder-independent culture system with defined factors. Two stable human iPSC lines were established from primary human dermal fibroblasts of two healthy volunteers. These human iPSCs expressed a panel of pluripotency markers including stage-specific embryonic antigen (SSEA)-4,tumor-rejection antigen (TRA)-1-60,TRA-1-81,and alkaline phosphatase,while maintaining normal karyotypes and the exogenous reprogramming factors being silenced. In addition,these human iPSCs can differentiate along lineages representative of the three embryonic germ layers upon formation of embryoid bodies,indicating their pluripotency. Furthermore,subcutaneous transplantation of these cells into immunodeficient mice resulted in teratoma formation in 6 to 8 weeks. Our findings are an important step toward generating patient-specific iPSCs in a more clinically compliant manner by eliminating the need of animal feeder cells and animal serum.
View Publication