nAChRs mediate human embryonic stem cell-derived endothelial cells: proliferation, apoptosis, and angiogenesis.
BACKGROUND: Many patients with ischemic heart disease have cardiovascular risk factors such as cigarette smoking. We tested the effect of nicotine (a key component of cigarette smoking) on the therapeutic effects of human embryonic stem cell-derived endothelial cells (hESC-ECs).backslashnbackslashnMETHODS AND RESULTS: To induce endothelial cell differentiation,undifferentiated hESCs (H9 line) underwent 4-day floating EB formation and 8-day outgrowth differentiation in EGM-2 media. After 12 days,CD31(+) cells (13.7+/-2.5%) were sorted by FACScan and maintained in EGM-2 media for further differentiation. After isolation,these hESC-ECs expressed endothelial specific markers such as vWF (96.3+/-1.4%),CD31 (97.2+/-2.5%),and VE-cadherin (93.7+/-2.8%),form vascular-like channels,and incorporated DiI-labeled acetylated low-density lipoprotein (DiI-Ac-LDL). Afterward,5x10(6) hESC-ECs treated for 24 hours with nicotine (10(-8) M) or PBS (as control) were injected into the hearts of mice undergoing LAD ligation followed by administration for two weeks of vehicle or nicotine (100 microg/ml) in the drinking water. Surprisingly,bioluminescence imaging (BLI) showed significant improvement in the survival of transplanted hESC-ECs in the nicotine treated group at 6 weeks. Postmortem analysis confirmed increased presence of small capillaries in the infarcted zones. Finally,in vitro mechanistic analysis suggests activation of the MAPK and Akt pathways following activation of nicotinic acetylcholine receptors (nAChRs).backslashnbackslashnCONCLUSIONS: This study shows for the first time that short-term systemic administrations of low dose nicotine can improve the survival of transplanted hESC-ECs,and enhance their angiogenic effects in vivo. Furthermore,activation of nAChRs has anti-apoptotic,angiogenic,and proliferative effects through MAPK and Akt signaling pathways.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Lee AS et al. (AUG 2009)
Cell Cycle 8 16 2608--2612
Effects of cell number on teratoma formation by human embryonic stem cells
Teratoma formation is a critical obstacle to safe clinical translation of human embryonic stem (ES) cell-based therapies in the future. As current methods of isolation are unable to yield 100% pure population of differentiated cells from a pluripotent donor source,potential development of these tumors is a significant concern. Here we used non-invasive reporter gene imaging to investigate the relationship between human ES cell number and teratoma formation in a xenogenic model of ES cell transplantation. Human ES cells (H9 line) were stably transduced with a double fusion (DF) reporter construct containing firefly luciferase and enhanced green fluorescent protein (Fluc- eGFP) driven by a human ubiquitin promoter. Immunodeficient mice received intramyocardial (n = 35) or skeletal muscle (n = 35) injection of 1 × 102,1 × 103,1 × 104,1 × 105 or 1 × 106 DF positive ES cells suspended in saline for myocardium and Matrigel for skeletal muscle. Cell survival and proliferation were monitored via bioluminescence imaging (BLI) for an 8 week period following transplantation. Mice negative for Fluc signal after 8 weeks were followed out to day 365 to confirm tumor absence. Significantly,in this study,a minimum of 1 × 105 ES cells in the myocardium and 1 × 104 cells in the skeletal muscle was observed to be requisite for teratoma development,suggesting that human ES cell number may be a critical factor in teratoma formation. Engraftment and tumor occurrence were also observed to be highly dependent on ES cell number. We anticipate these results should yield useful insights to the safe and reliable application of human ES cell derivatives in the clinic. Keywords
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Cremona CA and Lloyd AC (SEP 2009)
Journal of cell science 122 Pt 18 3272--81
Loss of anchorage in checkpoint-deficient cells increases genomic instability and promotes oncogenic transformation.
Mammalian cells generally require both mitogens and anchorage signals in order to proliferate. An important characteristic of many tumour cells is that they have lost this anchorage-dependent cell-cycle checkpoint,allowing them to proliferate without signals provided by their normal microenvironment. In the absence of anchorage signals from the extracellular matrix,many cell types arrest cell-cycle progression in G1 phase as a result of Rb-dependent checkpoints. However,despite inactivation of p53 and Rb proteins,SV40LT-expressing cells retain anchorage dependency,suggesting the presence of an uncharacterised cell-cycle checkpoint,which can be overridden by coexpression of oncogenic Ras. We report here that,although cyclin-CDK complexes persisted in suspension,proliferation was inhibited in LT-expressing cells by the CDK inhibitor p27(Kip1) (p27). Interestingly,this did not induce a stable arrest,but aberrant cell-cycle progression associated with stalled DNA replication,rereplication and chromosomal instability,which was sufficient to increase the frequency of oncogenic transformation. These results firstly indicate loss of anchorage in Rb- and p53-deficient cells as a novel mechanism for promotion of genomic instability; secondly suggest that anchorage checkpoints that protect normal cells from inappropriate proliferation act deleteriously in Rb- and p53-deficient cells to promote tumourigenesis; and thirdly indicate caution in the use of CDK inhibitors for cancer treatment.
View Publication
产品类型:
产品号#:
05401
05402
05411
产品名:
MesenCult™ MSC 基础培养基(人)
MesenCult™ MSC 刺激补充剂(人)
MesenCult™ 增殖试剂盒(人)
文献
Lo J-F et al. (MAR 2011)
Cancer research 71 5 1912--23
The epithelial-mesenchymal transition mediator S100A4 maintains cancer-initiating cells in head and neck cancers.
Cancer-initiating cells (CIC) comprise a rare subpopulation of cells in tumors that are proposed to be responsible for tumor growth. Starting from CICs identified in head and neck squamous cell carcinomas (HNSCC),termed head and neck cancer-initiating cells (HN-CIC),we determined as a candidate stemness-maintaining molecule for HN-CICs the proinflammatory mediator S100A4,which is also known to be an inducer of epithelial-mesenchymal transition. S100A4 knockdown in HN-CICs reduced their self-renewal capability and their stemness and tumorigenic properties,both in vitro and in vivo. Conversely,S100A4 overexpression in HNSCC cells enhanced their stem cell properties. Mechanistic investigations indicated that attenuation of endogenous S100A4 levels in HNSCC cells caused downregulation of Notch2 and PI3K (phosphoinositide 3-kinase)/pAKT along with upregulation of PTEN,consistent with biological findings. Immunohistochemical analysis of HNSCC clinical specimens showed that S100A4 expression was positively correlated with clinical grading,stemness markers,and poorer patient survival. Together,our findings reveal a crucial role for S100A4 signaling pathways in maintaining the stemness properties and tumorigenicity of HN-CICs. Furthermore,our findings suggest that targeting S100A4 signaling may offer a new targeted strategy for HNSCC treatment by eliminating HN-CICs.
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™工具
ALDEFLUOR™DEAB试剂
文献
Xu Y et al. (MAY 2014)
Biomaterials 35 16 4667--4677
Selective inhibition of breast cancer stem cells by gold nanorods mediated plasmonic hyperthermia.
Cancer stem cells (CSCs) have been identified in a variety of cancers and emerged as a new target for cancer therapy. CSCs are resistant to many current cancer treatments,including chemotherapy and radiation therapy. Therefore,eradication of this cell population is a primary objective in cancer therapy. Here,we report gold nanorods (AuNRs) mediated photothermal treatment can selectively eliminate CSCs in MCF-7 breast cancer cells. It significantly reduced the aldehyde dehydrogenase positive (ALDH(+)) cells subpopulation and the mammosphere formation ability of treated cells. Also,the gene expression of stem cell markers was decreased. Cellular uptake assay revealed that polyelectrolyte conjugated AuNRs could be internalized by CSCs much more and faster than non cancer stem cells (NCSCs),which might be the main reason for the selective elimination of CSCs. We further loaded salinomycin (SA),a CSCs inhibitor with polyelectrolyte conjugated AuNRs to get a synergistic CSCs inhibition. Enhanced inhibition of CSCs was obtained by NIR light triggered drug release and hyperthermia. This CSCs-targeted thermo-chemotherapy platform provides a new combinatorial strategy for efficient inhibition of CSCs,which is promising to improve cancer treatment and may overcome the chemoresistance and recurrence of cancer.
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™工具
ALDEFLUOR™DEAB试剂
文献
Zahedi A et al. (FEB 2016)
PLoS ONE 11 2 e0148642
Evaluating cell processes, quality, and biomarkers in pluripotent stem cells using video bioinformatics
There is a foundational need for quality control tools in stem cell laboratories engaged in basic research,regenerative therapies,and toxicological studies. These tools require automated methods for evaluating cell processes and quality during in vitro passaging,expansion,maintenance,and differentiation. In this paper,an unbiased,automated high-content profiling toolkit,StemCellQC,is presented that non-invasively extracts information on cell quality and cellular processes from time-lapse phase-contrast videos. Twenty four (24) morphological and dynamic features were analyzed in healthy,unhealthy,and dying human embryonic stem cell (hESC) colonies to identify those features that were affected in each group. Multiple features differed in the healthy versus unhealthy/dying groups,and these features were linked to growth,motility,and death. Biomarkers were discovered that predicted cell processes before they were detectable by manual observation. StemCellQC distinguished healthy and unhealthy/dying hESC colonies with 96% accuracy by non-invasively measuring and tracking dynamic and morphological features over 48 hours. Changes in cellular processes can be monitored by StemCellQC and predictions can be made about the quality of pluripotent stem cell colonies. This toolkit reduced the time and resources required to track multiple pluripotent stem cell colonies and eliminated handling errors and false classifications due to human bias. StemCellQC provided both user-specified and classifier-determined analysis in cases where the affected features are not intuitive or anticipated. Video analysis algorithms allowed assessment of biological phenomena using automatic detection analysis,which can aid facilities where maintaining stem cell quality and/or monitoring changes in cellular processes are essential. In the future StemCellQC can be expanded to include other features,cell types,treatments,and differentiating cells.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
A. Mendelson et al. (aug 2019)
JCI insight 4 16
Mesenchymal stromal cells lower platelet activation and assist in platelet formation in vitro.
The complex process of platelet formation originates with the hematopoietic stem cell,which differentiates through the myeloid lineage,matures,and releases proplatelets into the BM sinusoids. How formed platelets maintain a low basal activation state in the circulation remains unknown. We identify Lepr+ stromal cells lining the BM sinusoids as important contributors to sustaining low platelet activation. Ablation of murine Lepr+ cells led to a decreased number of platelets in the circulation with an increased activation state. We developed a potentially novel culture system for supporting platelet formation in vitro using a unique population of CD51+PDGFRalpha+ perivascular cells,derived from human umbilical cord tissue,which display numerous mesenchymal stem cell (MSC) properties. Megakaryocytes cocultured with MSCs had altered LAT and Rap1b gene expression,yielding platelets that are functional with low basal activation levels,a critical consideration for developing a transfusion product. Identification of a regulatory cell that maintains low baseline platelet activation during thrombopoiesis opens up new avenues for improving blood product production ex vivo.
View Publication
产品类型:
产品号#:
05402
05412
05455
05465
产品名:
MesenCult™ MSC 刺激补充剂(人)
MesenCult™ 脂肪分化试剂盒 (人)
MesenCult™-ACF软骨细胞分化试剂盒
MesenCult™ 成骨细胞分化试剂盒 (人)
文献
Easley CA et al. (JUN 2010)
Cellular reprogramming 12 3 263--73
mTOR-Mediated Activation of p70 S6K Induces Differentiation of Pluripotent Human Embryonic Stem Cells
Deciding to exit pluripotency and undergo differentiation is of singular importance for pluripotent cells,including embryonic stem cells (ESCs). The molecular mechanisms for these decisions to differentiate,as well as reversing those decisions during induced pluripotency (iPS),have focused largely on transcriptomic controls. Here,we explore the role of translational control for the maintenance of pluripotency and the decisions to differentiate. Global protein translation is significantly reduced in hESCs compared to their differentiated progeny. Furthermore,p70 S6K activation is restricted in hESCs compared to differentiated fibroblast-like cells. Disruption of p70 S6K-mediated translation by rapamycin or siRNA knockdown in undifferentiated hESCs does not alter cell viability or expression of the pluripotency markers Oct4 and Nanog. However,expression of constitutively active p70 S6K,but not wild-type p70 S6K,induces differentiation. Additionally,hESCs exhibit high levels of the mTORC1/p70 S6K inhibitory complex TSC1/TSC2 and preferentially express more rapamycin insensitive mTORC2 compared to differentiated cells. siRNA-mediated knockdown of both TSC2 and Rictor elevates p70 S6K activation and induces differentiation of hESCs. These results suggest that hESCs tightly regulate mTORC1/p70 S6K-mediated protein translation to maintain a pluripotent state as well as implicate a novel role for protein synthesis as a driving force behind hESC differentiation.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Laeng P et al. (OCT 2004)
Journal of neurochemistry 91 1 238--51
The mood stabilizer valproic acid stimulates GABA neurogenesis from rat forebrain stem cells.
Valproate,an anticonvulsant drug used to treat bipolar disorder,was studied for its ability to promote neurogenesis from embryonic rat cortical or striatal primordial stem cells. Six days of valproate exposure increased by up to fivefold the number and percentage of tubulin beta III-immunopositive neurons,increased neurite outgrowth,and decreased by fivefold the number of astrocytes without changing the number of cells. Valproate also promoted neuronal differentiation in human fetal forebrain stem cell cultures. The neurogenic effects of valproate on rat stem cells exceeded those obtained with the neurotrophins brain-derived growth factor (BDNF) or NT-3,and slightly exceeded the effects obtained with another mood stabilizer,lithium. No effect was observed with carbamazepine. Most of the newly formed neurons were GABAergic,as shown by 10-fold increases in neurons that immunostained for GABA and the GABA-synthesizing enzyme GAD65/67. Double immunostaining for bromodeoxyuridine and tubulin beta III showed that valproate increased by four- to fivefold the proliferation of neuronal progenitors derived from rat stem cells and increased cyclin D2 expression. Valproate also regulated the expression of survival genes,Bad and Bcl-2,at different times of treatment. The expression of prostaglandin E synthase,analyzed by quantitative RT-PCR,was increased by ninefold as early as 6 h into treatment by valproate. The enhancement of GABAergic neuron numbers,neurite outgrowth,and phenotypic expression via increases in the neuronal differentiation of neural stem cell may contribute to the therapeutic effects of valproate in the treatment of bipolar disorder.
View Publication
产品类型:
产品号#:
72382
产品名:
9-顺式视黄酸
文献
Conte D et al. (JAN 2012)
PloS one 7 12 e52167
Loss of Atrx sensitizes cells to DNA damaging agents through p53-mediated death pathways.
Prevalent cell death in forebrain- and Sertoli cell-specific Atrx knockout mice suggest that Atrx is important for cell survival. However,conditional ablation in other tissues is not associated with increased death indicating that diverse cell types respond differently to the loss of this chromatin remodeling protein. Here,primary macrophages isolated from Atrx(f/f) mice were infected with adenovirus expressing Cre recombinase or β-galactosidase,and assayed for cell survival under different experimental conditions. Macrophages survive without Atrx but undergo rapid apoptosis upon lipopolysaccharide (LPS) activation suggesting that chromatin reorganization in response to external stimuli is compromised. Using this system we next tested the effect of different apoptotic stimuli on cell survival. We observed that survival of Atrx-null cells were similar to wild type cells in response to serum withdrawal,anti-Fas antibody,C2 ceramide or dexamethasone treatment but were more sensitive to 5-fluorouracil (5-FU). Cell survival could be rescued by re-introducing Atrx or by removal of p53 demonstrating the cell autonomous nature of the effect and its p53-dependence. Finally,we demonstrate that multiple primary cell types (myoblasts,embryonic fibroblasts and neurospheres) were sensitive to 5-FU,cisplatin,and UV light treatment. Together,our results suggest that cells lacking Atrx are more sensitive to DNA damaging agents and that this may result in enhanced death during development when cells are at their proliferative peak. Moreover,it identifies potential treatment options for cancers associated with ATRX mutations,including glioblastoma and pancreatic neuroendocrine tumors.
View Publication
产品类型:
产品号#:
05700
05701
05702
产品名:
NeuroCult™ 基础培养基(小鼠和大鼠)
NeuroCult™ 扩增添加物(小鼠和大鼠)
NeuroCult™扩增试剂盒(小鼠和大鼠)
文献
Li X et al. (AUG 2015)
Cell stem cell 17 2 195--203
Small-Molecule-Driven Direct Reprogramming of Mouse Fibroblasts into Functional Neurons.
Recently,direct reprogramming between divergent lineages has been achieved by the introduction of regulatory transcription factors. This approach may provide alternative cell resources for drug discovery and regenerative medicine,but applications could be limited by the genetic manipulation involved. Here,we show that mouse fibroblasts can be directly converted into neuronal cells using only a cocktail of small molecules,with a yield of up to textgreater90% being TUJ1-positive after 16 days of induction. After a further maturation stage,these chemically induced neurons (CiNs) possessed neuron-specific expression patterns,generated action potentials,and formed functional synapses. Mechanistically,we found that a BET family bromodomain inhibitor,I-BET151,disrupted the fibroblast-specific program,while the neurogenesis inducer ISX9 was necessary to activate neuron-specific genes. Overall,our findings provide a proof of principle" for chemically induced direct reprogramming of somatic cell fates across germ layers without genetic manipulation�
View Publication
产品类型:
产品号#:
72052
72054
72112
72114
72232
72234
73202
73712
73714
产品名:
CHIR99021
CHIR99021
Forskolin
Forskolin
SB431542(水合物)
SB431542(水合物)
ISX-9
I-BET151
I-BET151
文献
J. C. Wagner et al. (sep 2022)
American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons 22 9 2237--2245
Alloantigen-specific regulatory T cell (Treg) therapy is a promising approach for suppressing alloimmune responses and minimizing immunosuppression after solid organ transplantation. Chimeric antigen receptor (CAR) targeting donor alloantigens can confer donor reactivity to Tregs. However,CAR Treg therapy has not been evaluated in vascularized transplant or multi-MHC mismatched models. Here,we evaluated the ability of CAR Tregs targeting HLA-A2 (A2-CAR) to prolong the survival of heterotopic heart transplants in mice. After verifying the in vitro activation,proliferation,and enhanced suppressive function of A2-CAR Tregs in the presence of A2-antigen,we analyzed the in vivo function of Tregs in C57BL/6 (B6) mice receiving A2-expressing heart allografts. A2-CAR Treg infusion increased the median survival of grafts from B6.HLA-A2 transgenic donors from 23 to 99 days,whereas median survival with polyclonal Treg infusion was 35 days. In a more stringent model of haplo-mismatched hearts from BALB/cxB6.HLA-A2 F1 donors,A2-CAR Tregs slightly increased median graft survival from 11 to 14 days,which was further extended to >100 days when combined with a 9-day course of rapamycin treatment. These findings demonstrate the efficacy of CAR Tregs,alone or in combination with immunosuppressive agents,toward protecting vascularized grafts in fully immunocompetent recipients.
View Publication