Matthews TA et al. (JAN 2014)
Brain Research 1543 28--37
Expression of the CHOP-inducible carbonic anhydrase CAVI-b is required for BDNF-mediated protection from hypoxia
Carbonic anhydrases (CAs) comprise a family of zinc-containing enzymes that catalyze the reversible hydration of carbon dioxide. CAs contribute to a myriad of physiological processes,including pH regulation,anion transport and water balance. To date,16 known members of the mammalian alpha-CA family have been identified. Given that the catalytic family members share identical reaction chemistry,their physiologic roles are influenced greatly by their tissue and sub-cellular locations. CAVI is the lone secreted CA and exists in both saliva and the gastrointestinal mucosa. An alternative,stress-inducible isoform of CAVI (CAVI-b) has been shown to be expressed from a cryptic promoter that is activated by the CCAAT/Enhancer-Binding Protein Homologous Protein (CHOP). The CAVI-b isoform is not secreted and is currently of unknown physiological function. Here we use neuronal models,including a model derived using Car6 and CHOP gene ablations,to delineate a role for CAVI-b in ischemic protection. Our results demonstrate that CAVI-b expression,which is increased through CHOP-signaling in response to unfolded protein stress,is also increased by oxygen-glucose deprivation (OGD). While enforced expression of CAVI-b is not sufficient to protect against ischemia,CHOP regulation of CAVI-b is necessary for adaptive changes mediated by BDNF that reduce subsequent ischemic damage. These results suggest that CAVI-b comprises a necessary component of a larger adaptive signaling pathway downstream of CHOP.
View Publication
产品类型:
产品号#:
05700
05701
05702
05703
05704
产品名:
NeuroCult™ 基础培养基(小鼠和大鼠)
NeuroCult™ 扩增添加物(小鼠和大鼠)
NeuroCult™扩增试剂盒(小鼠和大鼠)
NeuroCult™ 分化添加物(小鼠和大鼠)
NeuroCult™ 分化试剂盒(小鼠和大鼠)
文献
A. Gorgens et al. (5 2013)
Cell Reports 3 1539-1552
Revision of the Human Hematopoietic Tree: Granulocyte Subtypes Derive from Distinct Hematopoietic Lineages
The classical model of hematopoiesis predicts a dichotomous lineage restriction of multipotent hematopoietic progenitors (MPPs) into common lymphoid progenitors (CLPs) and common myeloid progenitors (CMPs). However,this idea has been challenged by the identification of lymphoid progenitors retaining partial myeloid potential (e.g.,LMPPs),implying that granulocytes can arise within both the classical lymphoid and the myeloid branches. Here,we resolve this issue by using cell-surface CD133 expression to discriminate functional progenitor populations. We show that eosinophilic and basophilic granulocytes as well as erythrocytes and megakaryocytes derive from a common erythro-myeloid progenitor (EMP),whereas neutrophilic granulocytes arise independently within a lympho-myeloid branch with long-term progenitor function. These findings challenge the concept of a CMP and restore dichotomy to the classical hematopoietic model.
View Publication
产品类型:
产品号#:
04434
28600
产品名:
MethoCult™H4434经典
L-Calc™有限稀释软件
文献
Young J et al. (SEP 2015)
Journal of Immunological Methods 424 91--99
A novel immunoassay to measure total serum lymphotoxin�?α levels in the presence of an anti-LTα therapeutic antibody
During drug development,measurement of suitable pharmacodynamic biomarkers is key to establishing in vivo drug activity. Binding of monoclonal antibody (mAb) therapeutics to soluble target proteins often results in elevated serum levels of their target antigen,and measuring total (free and bound) concentration of the target antigen can be an important means of demonstrating that the mAb has reached its specific target. However,accurately measuring soluble circulating antigen in preclinical or clinical samples in the presence of a therapeutic mAb presents a bioanalytical challenge. Particularly in the case of low molecular weight and/or multimeric targets,epitopes for capture and detection of the target by reagent antibodies can be obscured by bound therapeutic mAb. Lymphotoxin-alpha (LTα) is a cytokine in the TNF superfamily that has been implicated in the pathophysiology of autoimmune disease,and is a therapeutic target for neutralizing mAb. During preclinical safety studies in cynomolgus macaques,we encountered difficulties in measuring total LTα in serum of dosed animals. When serum LTα trimer was saturated with the anti-LTα mAb,binding of two reagent antibodies,as required for a classic sandwich ELISA,was not feasible,and dissociation methods were also found to be unsuitable. We therefore developed an approach in which excess anti-LTα mAb was added to the in vitro assay system to fully saturate all binding sites,and an anti-idiotypic antibody was used to detect bound therapeutic antibody. Using this method,total LTα could be accurately measured in cynomolgus macaque serum,and was observed to increase with increasing anti-LTα therapeutic mAb dose. Additional in vitro studies demonstrated that the method worked equally well in human serum. This assay strategy will be useful for quantifying total concentrations of other small and/or multimeric target proteins in the presence of a therapeutic antibody.
View Publication
产品类型:
产品号#:
产品名:
文献
Black LJ et al. (JAN 1994)
The Journal of clinical investigation 93 1 63--9
Raloxifene (LY139481 HCI) prevents bone loss and reduces serum cholesterol without causing uterine hypertrophy in ovariectomized rats.
There is a medical need for an agent with the positive effects of estrogen on bone and the cardiovascular system,but without the negative effects on reproductive tissue. Raloxifene (LY139481 HCI) is a benzothiophene derivative that binds to the estrogen receptor and inhibits the effects of estrogen on the uterus. In an ovariectomized (OVX) rat model we investigated the effects of raloxifene on bone loss (induced by estrogen deficiency),serum lipids,and uterine tissue. After oral administration of raloxifene for 5 wk (0.1-10 mg/kg per d) to OVX rats,bone mineral density in the distal femur and proximal tibia was significantly greater than that observed in OVX controls (ED50 of 0.03-0.3 mg/kg). Serum cholesterol was lower in the raloxifene-treated animals,which had a minimal effective dose of 0.1 mg/kg and an approximate oral ED50 of 0.2 mg/kg. The effects of raloxifene on bone and serum cholesterol were comparable to those of a 0.1-mg/kg per d oral dose of ethynyl estradiol. Raloxifene diverged dramatically from estrogen in its lack of significant estrogenic effects on uterine tissue. Ethynyl estradiol produced a marked elevation in a number of uterine histologic parameters (e.g.,epithelial cell height,stromal eosinophilia). These data suggest that raloxifene has promise as an agent with beneficial bone and cardiovascular effects in the absence of significant uterine effects.
View Publication
产品类型:
产品号#:
产品名:
文献
Farin HF et al. (DEC 2012)
Gastroenterology 143 6 1518--1529.e7
Redundant sources of Wnt regulate intestinal stem cells and promote formation of Paneth cells.
BACKGROUND & AIMS Wnt signaling regulates multiple aspects of intestinal physiology,including stem cell maintenance. Paneth cells support stem cells by secreting Wnt,but little is known about the exact sources and primary functions of individual Wnt family members. METHODS We analyzed intestinal tissues and cultured epithelial cells from adult mice with conditional deletion of Wnt3 (Vil-CreERT2;Wnt3fl/fl mice). We also analyzed intestinal tissues and cells from Atoh1 mutant mice,which lack secretory cells. RESULTS Unexpectedly,Wnt3 was dispensable for maintenance of intestinal stem cells in mice,indicating a redundancy of Wnt signals. By contrast,cultured crypt organoids required Paneth cell-derived Wnt3. Addition of exogenous Wnt,or coculture with mesenchymal cells,restored growth of Vil-CreERT2;Wnt3fl/fl crypt organoids. Intestinal organoids from Atoh1 mutant mice did not grow or form Paneth cells; addition of Wnt3 allowed growth in the absence of Paneth cells. Wnt signaling had a synergistic effect with the Lgr4/5 ligand R-spondin to induce formation of Paneth cells. Mosaic expression of Wnt3 in organoids using a retroviral vector promoted differentiation of Paneth cells in a cell-autonomous manner. CONCLUSIONS Wnt is part of a signaling loop that affects homeostasis of intestinal stem and Paneth cells in mice. Wnt3 signaling is required for growth and development of organoid cultures,whereas nonepithelial Wnt signals could provide a secondary physiological source of Wnt.
View Publication
产品类型:
产品号#:
72122
72124
产品名:
IWP-2
IWP-2
文献
Denning-Kendall P et al. (JAN 2003)
Stem cells (Dayton,Ohio) 21 6 694--701
Cobblestone area-forming cells in human cord blood are heterogeneous and differ from long-term culture-initiating cells.
The long-term culture-initiating cell (LTC-IC) assay is a physiological approach to the quantitation of primitive human hematopoietic cells. The readout using identification of cobblestone area-forming cells (CAFC) has gained popularity over the LTC-IC readout where cells are subcultured in a colony-forming cell assay. However,comparing the two assays,cord blood (CB) mononuclear cell (MNC) samples were found to contain a higher frequency of CAFC than LTC-IC (126 +/- 83 versus 40 +/- 31 per 10(5) cells,p = 0.0001). Overall,60% of week-5 cobblestones produced by CB MNC were not functional LTC-IC and were classified as false." Separation of CB MNC using immunomagnetic columns showed that false cobblestones were CD34(-)/lineage(+). Purified CD34(+) cells�
View Publication
产品类型:
产品号#:
09500
09600
09650
产品名:
BIT 9500血清替代物
StemSpan™ SFEM
StemSpan™ SFEM
文献
Pijuan-Galitó et al. ( 2016)
Nature communications 7 12170
Human serum-derived protein removes the need for coating in defined human pluripotent stem cell culture.
Reliable,scalable and time-efficient culture methods are required to fully realize the clinical and industrial applications of human pluripotent stem (hPS) cells. Here we present a completely defined,xeno-free medium that supports long-term propagation of hPS cells on uncoated tissue culture plastic. The medium consists of the Essential 8 (E8) formulation supplemented with inter-α-inhibitor (IαI),a human serum-derived protein,recently demonstrated to activate key pluripotency pathways in mouse PS cells. IαI efficiently induces attachment and long-term growth of both embryonic and induced hPS cell lines when added as a soluble protein to the medium at seeding. IαI supplementation efficiently supports adaptation of feeder-dependent hPS cells to xeno-free conditions,clonal growth as well as single-cell survival in the absence of Rho-associated kinase inhibitor (ROCKi). This time-efficient and simplified culture method paves the way for large-scale,high-throughput hPS cell culture,and will be valuable for both basic research and commercial applications.
View Publication
产品类型:
产品号#:
05110
85850
85857
产品名:
STEMdiff™权威内胚层检测试剂盒
mTeSR™1
mTeSR™1
文献
Tang C et al. (SEP 2011)
Nature biotechnology 29 9 829--34
An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells.
An important risk in the clinical application of human pluripotent stem cells (hPSCs),including human embryonic and induced pluripotent stem cells (hESCs and hiPSCs),is teratoma formation by residual undifferentiated cells. We raised a monoclonal antibody against hESCs,designated anti-stage-specific embryonic antigen (SSEA)-5,which binds a previously unidentified antigen highly and specifically expressed on hPSCs--the H type-1 glycan. Separation based on SSEA-5 expression through fluorescence-activated cell sorting (FACS) greatly reduced teratoma-formation potential of heterogeneously differentiated cultures. To ensure complete removal of teratoma-forming cells,we identified additional pluripotency surface markers (PSMs) exhibiting a large dynamic expression range during differentiation: CD9,CD30,CD50,CD90 and CD200. Immunohistochemistry studies of human fetal tissues and bioinformatics analysis of a microarray database revealed that concurrent expression of these markers is both common and specific to hPSCs. Immunodepletion with antibodies against SSEA-5 and two additional PSMs completely removed teratoma-formation potential from incompletely differentiated hESC cultures.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Pastos KM et al. (NOV 2006)
Blood 108 10 3360--2
Differential effects of recombinant thrombopoietin and bone marrow stromal-conditioned media on neonatal versus adult megakaryocytes.
Umbilical cord blood (CB) is a valuable source of stem cells for transplantation,but CB transplantations are frequently complicated by delayed platelet engraftment. The reasons underlying this are unclear. We hypothesized that CB- and peripheral-blood (PB)-derived megakaryocytes (MKs) respond differently to the adult hematopoietic microenvironment and to thrombopoietin (Tpo). To test this,we cultured CB- and PB-CD34(+) cells in adult bone marrow stromal conditioned media (CM) or unconditioned media (UCM) with increasing concentrations of recombinant Tpo and compared the effects of these conditions on CB-versus PB-MKs. PB-MKs reached highest ploidy in response to UCM + 100 ng/mL rTpo,and the addition of CM inhibited their maturation. In contrast,CB-MKs reached highest ploidy in CM without rTpo,and high rTpo concentrations (textgreater 0.1 ng/mL) inhibited their maturation. This is the first evidence that human neonatal and adult MKs have substantially different biologic responses to Tpo and potentially to other cytokines.
View Publication
产品类型:
产品号#:
05150
产品名:
MyeloCult™H5100
文献
Richard J et al. (FEB 2010)
Blood 115 7 1354--63
HIV-1 Vpr up-regulates expression of ligands for the activating NKG2D receptor and promotes NK cell-mediated killing.
HIV up-regulates cell-surface expression of specific ligands for the activating NKG2D receptor,including ULBP-1,-2,and -3,but not MICA or MICB,in infected cells both in vitro and in vivo. However,the viral factor(s) involved in NKG2D ligand expression still remains undefined. HIV-1 Vpr activates the DNA damage/stress-sensing ATR kinase and promotes G(2) cell-cycle arrest,conditions known to up-regulate NKG2D ligands. We report here that HIV-1 selectively induces cell-surface expression of ULBP-2 in primary CD4(+) T lymphocytes by a process that is Vpr dependent. Importantly,Vpr enhanced the susceptibility of HIV-1-infected cells to NK cell-mediated killing. Strikingly,Vpr alone was sufficient to up-regulate expression of all NKG2D ligands and thus promoted efficient NKG2D-dependent NK cell-mediated killing. Delivery of virion-associated Vpr via defective HIV-1 particles induced analogous biologic effects in noninfected target cells,suggesting that Vpr may act similarly beyond infected cells. All these activities relied on Vpr ability to activate the ATR-mediated DNA damage/stress checkpoint. Overall,these results indicate that Vpr is a key determinant responsible for HIV-1-induced up-regulation of NKG2D ligands and further suggest an immunomodulatory role for Vpr that may not only contribute to HIV-1-induced CD4(+) T-lymphocyte depletion but may also take part in HIV-1-induced NK-cell dysfunction.
View Publication
产品类型:
产品号#:
19052
19052RF
19055
19055RF
产品名:
EasySep™人CD4+ T细胞富集试剂盒
RoboSep™ 人CD4+ T细胞富集试剂盒含滤芯吸头
EasySep™人NK细胞富集试剂盒
RoboSep™ 人NK细胞富集试剂盒含滤芯吸头
文献
Nolz JC et al. (JUL 2007)
Journal of immunology (Baltimore,Md. : 1950) 179 2 1104--12
TCR/CD28-stimulated actin dynamics are required for NFAT1-mediated transcription of c-rel leading to CD28 response element activation.
TCR/CD28 engagement triggers the initiation of a variety of signal transduction pathways that lead to changes in gene transcription. Although reorganization of the actin cytoskeleton is required for T cell activation,the molecular pathways controlled by the actin cytoskeleton are ill defined. To this end,we analyzed TCR/CD28-stimulated signaling pathways in cytochalasin D-treated T cells to determine the cytoskeletal requirements for T cell activation. Cytochalasin D treatment impaired T cell activation by causing a reduction in TCR/CD28-mediated calcium flux,and blocked activation of two regulatory elements within the IL-2 promoter,NFAT/AP-1 and CD28RE/AP. Treatment had no effect on signaling leading to the activation of either AP-1 or NF-kappaB. Significantly,we found that NFAT1 is required for optimal c-rel up-regulation in response to TCR/CD28 stimulation. In fact,NFAT1 could be detected bound at the c-rel promoter in response to TCR/CD28 stimulation,and targeting of NFAT1 using RNA interference in human CD4(+) T cells abrogated c-rel transcription. Overall,these findings establish that disrupting actin cytoskeletal dynamics impairs TCR/CD28-mediated calcium flux required for NFAT1-mediated c-rel transcription and,thus,activation of the CD28RE/AP.
View Publication
产品类型:
产品号#:
15022
15062
产品名:
RosetteSep™人CD4+ T细胞富集抗体混合物
RosetteSep™人CD4+ T细胞富集抗体混合物
文献
De Filippis L et al. ( 2016)
Molecular brain 9 1 51
Ethanol-mediated activation of the NLRP3 inflammasome in iPS cells and iPS cells-derived neural progenitor cells.
BACKGROUND Alcohol abuse produces an enormous impact on health,society,and the economy. Currently,there are very limited therapies available,largely due to the poor understanding of mechanisms underlying alcohol use disorders (AUDs) in humans. Oxidative damage of mitochondria and cellular proteins aggravates the progression of neuroinflammation and neurological disorders initiated by alcohol abuse. RESULTS Here we show that ethanol exposure causes neuroinflammation in both human induced pluripotent stem (iPS) cells and human neural progenitor cells (NPCs). Ethanol exposure for 24 hours or 7 days does not affect the proliferation of iPS cells and NPCs,but primes an innate immune-like response by activating the NLR family pyrin domain containing 3 (NLRP3) inflammasome pathway. This leads to an increase of microtubule-associated protein 1A/1B-light chain 3(+) (LC3B(+)) autophagic puncta and impairment of the mitochondrial and lysosomal distribution. In addition,a decrease of mature neurons derived from differentiating NPCs is evident in ethanol pre-exposed compared to control NPCs. Moreover,a second insult of a pro-inflammatory factor in addition to ethanol preexposure enhances innate cellular inflammation in human iPS cells. CONCLUSIONS This study provides strong evidence that neuronal inflammation contributes to the pathophysiology of AUDs through the activation of the inflammasome pathway in human cellular models.
View Publication