Rapti K et al. (FEB 2015)
Molecular Therapy — Methods & Clinical Development 2 May 2014 14067
Effectiveness of gene delivery systems for pluripotent and differentiated cells.
Human embryonic stem cells (hESC) and induced pluripotent stem cells (hiPSC) assert a great future for the cardiovascular diseases,both to study them and to explore therapies. However,a comprehensive assessment of the viral vectors used to modify these cells is lacking. In this study,we aimed to compare the transduction efficiency of recombinant adeno-associated vectors (AAV),adenoviruses and lentiviral vectors in hESC,hiPSC,and the derived cardiomyocytes. In undifferentiated cells,adenoviral and lentiviral vectors were superior,whereas in differentiated cells AAV surpassed at least lentiviral vectors. We also tested four AAV serotypes,1,2,6,and 9,of which 2 and 6 were superior in their transduction efficiency. Interestingly,we observed that AAVs severely diminished the viability of undifferentiated cells,an effect mediated by induction of cell cycle arrest genes and apoptosis. Furthermore,we show that the transduction efficiency of the different viral vectors correlates with the abundance of their respective receptors. Finally,adenoviral delivery of the calcium-transporting ATPase SERCA2a to hESC and hiPSC-derived cardiomyocytes successfully resulted in faster calcium reuptake. In conclusion,adenoviral vectors prove to be efficient for both differentiated and undifferentiated lines,whereas lentiviral vectors are more applicable to undifferentiated cells and AAVs to differentiated cells.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
T. E. Ludwig et al. (aug 2006)
Nature methods 3 8 637--46
Feeder-independent culture of human embryonic stem cells.
Feeder-independent culture of human embryonic stem cells.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Ohno Y et al. (DEC 2010)
Proceedings of the National Academy of Sciences of the United States of America 107 50 21529--34
Hoxb4 transduction down-regulates Geminin protein, providing hematopoietic stem and progenitor cells with proliferation potential.
Retrovirus-mediated transduction of Hoxb4 enhances hematopoietic stem cell (HSC) activity and enforced expression of Hoxb4 induces in vitro development of HSCs from differentiating mouse embryonic stem cells,but the underlying molecular mechanism remains unclear. We previously showed that the HSC activity was abrogated by accumulated Geminin,an inhibitor for the DNA replication licensing factor Cdt1 in mice deficient in Rae28 (also known as Phc1),which encodes a member of Polycomb-group complex 1. In this study we found that Hoxb4 transduction reduced accumulated Geminin in Rae28-deficient mice,despite increasing the mRNA,and restored the impaired HSC activity. Supertransduction of Geminin suppressed the HSC activity induced by Hoxb4 transduction,whereas knockdown of Geminin promoted the clonogenic and replating activities,indicating the importance of Geminin regulation in the molecular mechanism underlying Hoxb4 transduction-mediated enhancement of the HSC activity. This facilitated our investigation of how transduced Hoxb4 reduced Geminin. We showed in vitro and in vivo that Hoxb4 and the Roc1 (also known as Rbx1)-Ddb1-Cul4a ubiquitin ligase core component formed a complex designated as RDCOXB4,which acted as an E3 ubiquitin ligase for Geminin and down-regulated Geminin through the ubiquitin-proteasome system. Down-regulated Geminin and the resultant E2F activation may provide cells with proliferation potential by increasing a DNA prereplicative complex loaded onto chromatin. Here we suggest that transduced Hoxb4 down-regulates Geminin protein probably by constituting the E3 ubiquitin ligase for Geminin to provide hematopoietic stem and progenitor cells with proliferation potential.
View Publication
产品类型:
产品号#:
03231
产品名:
MethoCult™M3231
文献
Charrier S et al. (AUG 2004)
Blood 104 4 978--85
Inhibition of angiotensin I-converting enzyme induces radioprotection by preserving murine hematopoietic short-term reconstituting cells.
Angiotensin I-converting enzyme (ACE) inhibitors can affect hematopoiesis by several mechanisms including inhibition of angiotensin II formation and increasing plasma concentrations of AcSDKP (acetyl-N-Ser-Asp-Lys-Pro),an ACE substrate and a negative regulator of hematopoiesis. We tested whether ACE inhibition could decrease the hematopoietic toxicity of lethal or sublethal irradiation protocols. In all cases,short treatment with the ACE inhibitor perindopril protected against irradiation-induced death. ACE inhibition accelerated hematopoietic recovery and led to a significant increase in platelet and red cell counts. Pretreatment with perindopril increased bone marrow cellularity and the number of hematopoietic progenitors (granulocyte macrophage colony-forming unit [CFU-GM],erythroid burst-forming unit [BFU-E],and megakaryocyte colony-forming unit [CFU-MK]) from day 7 to 28 after irradiation. Perindopril also increased the number of hematopoietic stem cells with at least a short-term reconstitutive activity in animals that recovered from irradiation. To determine the mechanism of action involved,we evaluated the effects of increasing AcSDKP plasma concentrations and of an angiotensin II type 1 (AT1) receptor antagonist (telmisartan) on radioprotection. We found that the AT1-receptor antagonism mediated similar radioprotection as the ACE inhibitor. These results suggest that ACE inhibitors and AT1-receptor antagonists could be used to decrease the hematopoietic toxicity of irradiation.
View Publication
产品类型:
产品号#:
03134
产品名:
MethoCult™M3134
文献
Lippmann ES et al. (AUG 2012)
Nature biotechnology 30 8 783--791
Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells.
The blood-brain barrier (BBB) is crucial to the health of the brain and is often compromised in neurological disease. Moreover,because of its barrier properties,this endothelial interface restricts uptake of neurotherapeutics. Thus,a renewable source of human BBB endothelium could spur brain research and pharmaceutical development. Here we show that endothelial cells derived from human pluripotent stem cells (hPSCs) acquire BBB properties when co-differentiated with neural cells that provide relevant cues,including those involved in Wnt/β-catenin signaling. The resulting endothelial cells have many BBB attributes,including well-organized tight junctions,appropriate expression of nutrient transporters and polarized efflux transporter activity. Notably,they respond to astrocytes,acquiring substantial barrier properties as measured by transendothelial electrical resistance (1,450 ± 140 Ω cm2),and they possess molecular permeability that correlates well with in vivo rodent blood-brain transfer coefficients.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Bartulos O et al. (JUL 2016)
JCI insight 1 10
ISL1 cardiovascular progenitor cells for cardiac repair after myocardial infarction.
Cardiovascular progenitor cells (CPCs) expressing the ISL1-LIM-homeodomain transcription factor contribute developmentally to cardiomyocytes in all 4 chambers of the heart. Here,we show that ISL1-CPCs can be applied to myocardial regeneration following injury. We used a rapid 3D methylcellulose approach to form murine and human ISL1-CPC spheroids that engrafted after myocardial infarction in murine hearts,where they differentiated into cardiomyocytes and endothelial cells,integrating into the myocardium and forming new blood vessels. ISL1-CPC spheroid-treated mice exhibited reduced infarct area and increased blood vessel formation compared with control animals. Moreover,left ventricular (LV) contractile function was significantly better in mice transplanted with ISL1-CPCs 4 weeks after injury than that in control animals. These results provide proof-of-concept of a cardiac repair strategy employing ISL1-CPCs that,based on our previous lineage-tracing studies,are committed to forming heart tissue,in combination with a robust methylcellulose spheroid-based delivery approach.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Telugu BP et al. (JUL 2013)
Placenta 34 7 536--543
Comparison of extravillous trophoblast cells derived from human embryonic stem cells and from first trimester human placentas
AbstractIntroduction Preeclampsia and other placental pathologies are characterized by a lack of spiral artery remodeling associated with insufficient invasion by extravillous trophoblast cells (EVT). Because trophoblast invasion occurs in early pregnancy when access to human placental tissue is limited,there is a need for model systems for the study of trophoblast differentiation and invasion. Human embryonic stem cells (hESC) treated with BMP4- differentiate to trophoblast,and express HLA-G,a marker of EVT. The goals of the present study were to further characterize the HLA-G+ cells derived from BMP4-treated hESC,and determine their suitability as a model. Methods HESC were treated with BMP4 under 4% or 20% oxygen and tested in Matrigel invasion chambers. Both BMP4-treated hESC and primary human placental cells were separated into HLA-G+ and HLA-G−/TACSTD2+ populations with immunomagnetic beads and expression profiles analyzed by microarray. Results There was a 10-fold increase in invasion when hESC were BMP4-treated. There was also an independent,stimulatory effect of oxygen on this process. Invasive cells expressed trophoblast marker KRT7,and the majority were also HLA-G+. Gene expression profiles revealed that HLA-G+,BMP4-treated hESC were similar to,but distinct from,HLA-G+ cells isolated from first trimester placentas. Whereas HLA-G+ and HLA-G− cells from first trimester placentas had highly divergent gene expression profiles,HLA-G+ and HLA-G− cells from BMP4-treated hESC had somewhat similar profiles,and both expressed genes characteristic of early trophoblast development. Conclusions We conclude that hESC treated with BMP4 provide a model for studying transition to the EVT lineage.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Kishino Y et al. (MAY 2014)
PLoS ONE 9 5 e97397
Derivation of transgene-free human induced pluripotent stem cells from human peripheral T cells in defined culture conditions
Recently,induced pluripotent stem cells (iPSCs) were established as promising cell sources for revolutionary regenerative therapies. The initial culture system used for iPSC generation needed fetal calf serum in the culture medium and mouse embryonic fibroblast as a feeder layer,both of which could possibly transfer unknown exogenous antigens and pathogens into the iPSC population. Therefore,the development of culture systems designed to minimize such potential risks has become increasingly vital for future applications of iPSCs for clinical use. On another front,although donor cell types for generating iPSCs are wide-ranging,T cells have attracted attention as unique cell sources for iPSCs generation because T cell-derived iPSCs (TiPSCs) have a unique monoclonal T cell receptor genomic rearrangement that enables their differentiation into antigen-specific T cells,which can be applied to novel immunotherapies. In the present study,we generated transgene-free human TiPSCs using a combination of activated human T cells and Sendai virus under defined culture conditions. These TiPSCs expressed pluripotent markers by quantitative PCR and immunostaining,had a normal karyotype,and were capable of differentiating into cells from all three germ layers. This method of TiPSCs generation is more suitable for the therapeutic application of iPSC technology because it lowers the risks associated with the presence of undefined,animal-derived feeder cells and serum. Therefore this work will lead to establishment of safer iPSCs and extended clinical application.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Schreiber A et al. (JUL 2005)
Journal of the American Society of Nephrology : JASN 16 7 2216--24
Membrane proteinase 3 expression in patients with Wegener's granulomatosis and in human hematopoietic stem cell-derived neutrophils.
A large membrane proteinase 3 (mPR3)-positive neutrophil subset (mPR3high) is a risk for Wegener's granulomatosis (WG). The relationship between mPR3 expression and clinical manifestations was investigated in 81 WG patients and mPR3 expression was studied in CD34+ stem cell-derived human neutrophils. The mPR3high neutrophil percentage correlated with renal function,anemia,and albumin at the time of presentation. The mPR3high neutrophil percentage and renal failure severity correlated directly after 5 yr. For elucidating mechanisms that govern mPR3 expression,studies were conducted to determine whether the genetic information that governs mPR3 expression resides within the neutrophils,even without stimuli possibly related to disease. CD34+ hematopoietic stem cells were differentiated to neutrophils,and their mPR3 expression was determined. A two-step amplification/differentiation protocol was used to differentiate human CD34+ hematopoietic stem cells into neutrophils with G-CSF. The cells progressively expressed the neutrophil surface markers CD66b,CD35,and CD11b. The ferricytochrome C assay demonstrated a strong respiratory burst at day 14 in response to PMA but none at day 0. Intracellular PR3 was detectable from day 4 by Western blotting. An increasing percentage of a mPR3-positive neutrophil subset became detectable by flow cytometry,whereas a second subset remained negative,consistent with a bimodal expression. Finally,human PR3-anti-neutrophil cytoplasmic autoantibodies induced a stronger respiratory burst,compared with human control IgG in stem cell-derived neutrophils. Taken together,these studies underscore the clinical importance of the WG mPR3 phenotype. The surface mPR3 on resting cells is probably genetically determined rather than being dictated by external factors.
View Publication
产品类型:
产品号#:
09600
09650
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
文献
Hwang Y et al. (JUL 2011)
Regenerative medicine 6 4 505--24
Engineered microenvironments for self-renewal and musculoskeletal differentiation of stem cells.
Stem cells hold great promise for therapies aimed at regenerating damaged tissue,drug screening and studying in vitro models of human disease. However,many challenges remain before these applications can become a reality. One such challenge is developing chemically defined and scalable culture conditions for derivation and expansion of clinically viable human pluripotent stem cells,as well as controlling their differentiation with high specificity. Interaction of stem cells with their extracellular microenvironment plays an important role in determining their differentiation commitment and functions. Regenerative medicine approaches integrating cell-matrix and cell-cell interactions,and soluble factors could lead to development of robust microenvironments to control various cellular responses. Indeed,several of these recent developments have provided significant insight into the design of microenvironments that can elicit the targeted cellular response. In this article,we will focus on some of these developments with an emphasis on matrix-mediated expansion of human pluripotent stem cells while maintaining their pluripotency. We will also discuss the role of matrix-based cues and cell-cell interactions in the form of soluble signals in directing stem cell differentiation into musculoskeletal lineages.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Li C-S et al. (MAR 2016)
Biomaterials 83 194--206
Fibromodulin reprogrammed cells: A novel cell source for bone regeneration.
Pluripotent or multipotent cell-based therapeutics are vital for skeletal reconstruction in non-healing critical-sized defects since the local endogenous progenitor cells are not often adequate to restore tissue continuity or function. However,currently available cell-based regenerative strategies are hindered by numerous obstacles including inadequate cell availability,painful and invasive cell-harvesting procedures,and tumorigenesis. Previously,we established a novel platform technology for inducing a quiescent stem cell-like stage using only a single extracellular proteoglycan,fibromodulin (FMOD),circumventing gene transduction. In this study,we further purified and significantly increased the reprogramming rate of the yield multipotent FMOD reprogrammed (FReP) cells. We also exposed the 'molecular blueprint' of FReP cell osteogenic differentiation by gene profiling. Radiographic analysis showed that implantation of FReP cells into a critical-sized SCID mouse calvarial defect,contributed to the robust osteogenic capability of FReP cells in a challenging clinically relevant traumatic scenario in vivo. The persistence,engraftment,and osteogenesis of transplanted FReP cells without tumorigenesis in vivo were confirmed by histological and immunohistochemical staining. Taken together,we have provided an extended potency,safety,and molecular profile of FReP cell-based bone regeneration. Therefore,FReP cells present a high potential for cellular and gene therapy products for bone regeneration.
View Publication
产品类型:
产品号#:
05893
85850
85857
产品名:
AggreWell™ EB形成培养基
mTeSR™1
mTeSR™1
文献
Alison MR et al. (DEC 2010)
The Journal of pathology 222 4 335--44
Finding cancer stem cells: are aldehyde dehydrogenases fit for purpose?
Despite many years of intensive effort,there is surprisingly little consensus on the most suitable markers with which to locate and isolate stem cells from adult tissues. By comparison,the study of cancer stem cells is still in its infancy; so,unsurprisingly,there is great uncertainty as to the identity of these cells. Stem cell markers can be broadly categorized into molecular determinants of self-renewal,clonogenicity,multipotentiality,adherence to the niche,and longevity. This review assesses the utility of recognizing cancer stem cells by virtue of high expression of aldehyde dehydrogenases (ALDHs),probably significant determinants of cell survival through their ability to detoxify many potentially cytotoxic molecules,and contributing to drug resistance. Antibodies are available against the ALDH enzyme family,but the vast majority of studies have used cell sorting techniques to enrich for cells expressing these enzymes. Live cells expressing high ALDH activity are usually identified by the ALDEFLUOR kit and sorted by fluorescence activated cell sorting (FACS). For many human tumours,but notably breast cancer,cell selection based upon ALDH activity appears to be a useful marker for enriching for cells with tumour-initiating activity (presumed cancer stem cells) in immunodeficient mice,and indeed the frequency of so-called ALDH(bri) cells in many tumours can be an independent prognostic indicator.
View Publication