Kwon HS et al. (JUN 2013)
The Journal of biological chemistry 288 23 16882--94
Myocilin stimulates osteogenic differentiation of mesenchymal stem cells through mitogen-activated protein kinase signaling.
Myocilin is a secreted glycoprotein that is expressed in ocular and non-ocular tissues. Mutations in the MYOCILIN gene may lead to juvenile- and adult-onset primary open-angle glaucoma. Here we report that myocilin is expressed in bone marrow-derived mesenchymal stem cells (MSCs) and plays a role in their differentiation into osteoblasts in vitro and in osteogenesis in vivo. Expression of myocilin was detected in MSCs derived from mouse,rat,and human bone marrow,with human MSCs exhibiting the highest level of myocilin expression. Expression of myocilin rose during the course of human MSC differentiation into osteoblasts but not into adipocytes,and treatment with exogenous myocilin further enhanced osteogenesis. MSCs derived from Myoc-null mice had a reduced ability to differentiate into the osteoblastic lineage,which was partially rescued by exogenous extracellular myocilin treatment. Myocilin also stimulated osteogenic differentiation of wild-type MSCs,which was associated with activation of the p38,Erk1/2,and JNK MAP kinase signaling pathways as well as up-regulated expression of the osteogenic transcription factors Runx2 and Dlx5. Finally,cortical bone thickness and trabecular volume,as well as the expression level of osteopontin,a known factor of bone remodeling and osteoblast differentiation,were reduced dramatically in the femurs of Myoc-null mice compared with wild-type mice. These data suggest that myocilin should be considered as a target for improving the bone regenerative potential of MSCs and may identify a new role for myocilin in bone formation and/or maintenance in vivo.
View Publication
产品类型:
产品号#:
72682
72684
产品名:
BIRB - 796
BIRB - 796
文献
Suissa Y et al. (AUG 2013)
PLoS ONE 8 8 e70397
Gastrin: A Distinct Fate of Neurogenin3 Positive Progenitor Cells in the Embryonic Pancreas
Neurogenin3+ (Ngn3+) progenitor cells in the developing pancreas give rise to five endocrine cell types secreting insulin,glucagon,somatostatin,pancreatic polypeptide and ghrelin. Gastrin is a hormone produced primarily by G-cells in the stomach,where it functions to stimulate acid secretion by gastric parietal cells. Gastrin is expressed in the embryonic pancreas and is common in islet cell tumors,but the lineage and regulators of pancreatic gastrin+ cells are not known. We report that gastrin is abundantly expressed in the embryonic pancreas and disappears soon after birth. Some gastrin+ cells in the developing pancreas co-express glucagon,ghrelin or pancreatic polypeptide,but many gastrin+ cells do not express any other islet hormone. Pancreatic gastrin+ cells express the transcription factors Nkx6.1,Nkx2.2 and low levels of Pdx1,and derive from Ngn3+ endocrine progenitor cells as shown by genetic lineage tracing. Using mice deficient for key transcription factors we show that gastrin expression depends on Ngn3,Nkx2.2,NeuroD1 and Arx,but not Pax4 or Pax6. Finally,gastrin expression is induced upon differentiation of human embryonic stem cells to pancreatic endocrine cells expressing insulin. Thus,gastrin+ cells are a distinct endocrine cell type in the pancreas and an alternative fate of Ngn3+ cells.
View Publication
Burdon T et al. (JUN 1999)
Developmental biology 210 1 30--43
Suppression of SHP-2 and ERK signalling promotes self-renewal of mouse embryonic stem cells.
The propagation of pluripotent mouse embryonic stem (ES) cells depends on signals transduced through the cytokine receptor subunit gp130. Signalling molecules activated downstream of gp130 in ES cells include STAT3,the protein tyrosine phosphatase SHP-2,and the mitogen-activated protein kinases,ERK1 and ERK2. A chimaeric receptor in which tyrosine 118 in the gp130 cytoplasmic domain was mutated did not engage SHP-2 and failed to activate ERKs. However,this receptor did support ES cell self-renewal. In fact,stem cell colonies formed at 100-fold lower concentrations of cytokine than the unmodified receptor. Moreover,altered ES cell morphology and growth were observed at high cytokine concentrations. These indications of deregulated signalling in the absence of tyrosine 118 were substantiated by sustained activation of STAT3. Confirmation that ERK activation is not required for self-renewal was obtained by propagation of pluripotent ES cells in the presence of the MEK inhibitor PD098059. In fact,the growth of undifferentiated ES cells was enhanced by culture in PD098059. Thus activation of ERKs appears actively to impair self-renewal. These data imply that the self-renewal signal from gp130 is a finely tuned balance of positive and negative effectors.
View Publication
Scott SA et al. (FEB 2007)
Experimental hematology 35 2 263--73
Zebularine inhibits human acute myeloid leukemia cell growth in vitro in association with p15INK4B demethylation and reexpression.
OBJECTIVE The p15INK4B tumor suppressor is frequently silenced by promoter hypermethylation in myelodysplastic syndrome and acute myeloid leukemia (AML). Clinically approved DNA methylation inhibitors,such as 5-aza-2'-deoxycytidine,can reverse p15INK4B promoter methylation,but widespread clinical use of these inhibitors is limited by their toxicity and instability in aqueous solution. The cytidine analog zebularine is a stable DNA methylation inhibitor that has minimal toxicity in vitro and in vivo. We evaluated zebularine effects on p15INK4B reactivation and cell growth in vitro to investigate a potential role for zebularine in treating myeloid malignancies. METHODS We examined the specific effects of zebularine on reexpression of transcriptionally silenced p15INK4B and its global effects on cell cycle and apoptosis in AML cell lines and primary patient samples. RESULTS Zebularine treatment of AML193,which has a densely methylated p15INK4B promoter,results in a dose-dependent increase in p15INK4B expression that correlates with CpG island promoter demethylation and enrichment of local histone acetylation. We observed enhanced p15INK4B induction following co-treatment with zebularine and the histone deacetylase inhibitor Trichostatin A. Zebularine inhibits cell proliferation,arrests cells at G(2)/M,and induces apoptosis at dosages that effectively demethylate the p15INK4B promoter. Zebularine treatment of KG-1 cells and AML patient blasts with hypermethylated p15INK4B promoters also reactivates p15INK4B reexpression and induces apoptosis. CONCLUSION Zebularine is an effective inhibitor of p15INK4B methylation and cell growth in human AML in vitro. Our results extend the spectrum of zebularine effects to nonepithelial malignancies and provide a strong rationale for evaluating its clinical utility in the treatment of myeloid malignancies.
View Publication
产品类型:
产品号#:
72902
产品名:
Zebularine
文献
Braam SR et al. (SEP 2008)
Stem cells (Dayton,Ohio) 26 9 2257--65
Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alphavbeta5 integrin.
Defined growth conditions are essential for many applications of human embryonic stem cells (hESC). Most defined media are presently used in combination with Matrigel,a partially defined extracellular matrix (ECM) extract from mouse sarcoma. Here,we defined ECM requirements of hESC by analyzing integrin expression and ECM production and determined integrin function using blocking antibodies. hESC expressed all major ECM proteins and corresponding integrins. We then systematically replaced Matrigel with defined medium supplements and ECM proteins. Cells attached efficiently to natural human vitronectin,fibronectin,and Matrigel but poorly to laminin + entactin and collagen IV. Integrin-blocking antibodies demonstrated that alphaVbeta5 integrins mediated adhesion to vitronectin,alpha5beta1 mediated adhesion to fibronectin,and alpha6beta1 mediated adhesion to laminin + entactin. Fibronectin in feeder cell-conditioned medium partially supported growth on all natural matrices,but in defined,nonconditioned medium only Matrigel or (natural and recombinant) vitronectin was effective. Recombinant vitronectin was the only defined functional alternative to Matrigel,supporting sustained self-renewal and pluripotency in three independent hESC lines.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Yang C-TT et al. (AUG 2014)
British Journal of Haematology 166 3 435--448
Human induced pluripotent stem cell derived erythroblasts can undergo definitive erythropoiesis and co-express gamma and beta globins.
Human induced pluripotent stem cells (hiPSCs),like embryonic stem cells,are under intense investigation for novel approaches to model disease and for regenerative therapies. Here,we describe the derivation and characterization of hiPSCs from a variety of sources and show that,irrespective of origin or method of reprogramming,hiPSCs can be differentiated on OP9 stroma towards a multi-lineage haemo-endothelial progenitor that can contribute to CD144(+) endothelium,CD235a(+) erythrocytes (myeloid lineage) and CD19(+) B lymphocytes (lymphoid lineage). Within the erythroblast lineage,we were able to demonstrate by single cell analysis (flow cytometry),that hiPSC-derived erythroblasts express alpha globin as previously described,and that a sub-population of these erythroblasts also express haemoglobin F (HbF),indicative of fetal definitive erythropoiesis. More notably however,we were able to demonstrate that a small sub-fraction of HbF positive erythroblasts co-expressed HbA in a highly heterogeneous manner,but analogous to cord blood-derived erythroblasts when cultured using similar methods. Moreover,the HbA expressing erythroblast population could be greatly enhanced (44textperiodcentered0 ± 6textperiodcentered04%) when a defined serum-free approach was employed to isolate a CD31(+) CD45(+) erythro-myeloid progenitor. These findings demonstrate that hiPSCs may represent a useful alternative to standard sources of erythrocytes (RBCs) for future applications in transfusion medicine.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Tomov ML et al. (JUL 2015)
Macromolecular bioscience 15 7 892--900
The Human Embryoid Body Cystic Core Exhibits Architectural Complexity Revealed by use of High Throughput Polymer Microarrays.
In pluripotent stem cell differentiation,embryoid bodies (EBs) provide a three-dimensional [3D] multicellular precursor in lineage specification. The internal structure of EBs is not well characterized yet is predicted to be an important parameter to differentiation. Here,we use custom SU-8 molds to generate transparent lithography-templated arrays of polydimethylsiloxane (LTA-PDMS) for high throughput analysis of human embryonic stem cell (hESC) EB formation and internal architecture. EBs formed in 200 and 500 $$m diameter microarray wells by use of single cells,2D clusters,or 3D early aggregates were compared. We observe that 200 $$m EBs are monocystic versus 500 $$m multicystic EBs that contain macro,meso and microsized cysts. In adherent differentiation of 500 $$m EBs,the multicystic character impairs the 3D to 2D transition creating non-uniform monolayers. Our findings reveal that EB core structure has a size-dependent character that influences its architecture and cell population uniformity during early differentiation.
View Publication
产品类型:
产品号#:
05110
产品名:
STEMdiff™定型内胚层检测试剂盒
文献
Randrianarison-Huetz V et al. (APR 2010)
Blood 115 14 2784--95
Gfi-1B controls human erythroid and megakaryocytic differentiation by regulating TGF-beta signaling at the bipotent erythro-megakaryocytic progenitor stage.
Growth factor independence-1B (Gfi-1B) is a transcriptional repressor essential for erythropoiesis and megakaryopoiesis. Targeted gene disruption of GFI1B in mice leads to embryonic lethality resulting from failure to produce definitive erythrocytes,hindering the study of Gfi-1B function in adult hematopoiesis. We here show that,in humans,Gfi-1B controls the development of erythrocytes and megakaryocytes by regulating the proliferation and differentiation of bipotent erythro-megakaryocytic progenitors. We further identify in this cell population the type III transforming growth factor-beta receptor gene,TGFBR3,as a direct target of Gfi-1B. Knockdown of Gfi-1B results in altered transforming growth factor-beta (TGF-beta) signaling as shown by the increase in Smad2 phosphorylation and its inability to associate to the transcription intermediary factor 1-gamma (TIF1-gamma). Because the Smad2/TIF1-gamma complex is known to specifically regulate erythroid differentiation,we propose that,by repressing TGF-beta type III receptor (TbetaRIotaII) expression,Gfi-1B favors the Smad2/TIF1-gamma interaction downstream of TGF-beta signaling,allowing immature progenitors to differentiate toward the erythroid lineage.
View Publication
产品类型:
产品号#:
产品名:
文献
Munshi N et al. ( 2010)
Molecular cancer therapeutics 9 6 1544--1553
ARQ 197, a novel and selective inhibitor of the human c-Met receptor tyrosine kinase with antitumor activity.
The met proto-oncogene is functionally linked with tumorigenesis and metastatic progression. Validation of the receptor tyrosine kinase c-Met as a selective anticancer target has awaited the emergence of selective c-Met inhibitors. Herein,we report ARQ 197 as the first non-ATP-competitive small molecule that selectively targets the c-Met receptor tyrosine kinase. Exposure to ARQ 197 resulted in the inhibition of proliferation of c-Met-expressing cancer cell lines as well as the induction of caspase-dependent apoptosis in cell lines with constitutive c-Met activity. These cellular responses to ARQ 197 were phenocopied by RNAi-mediated c-Met depletion and further demonstrated by the growth inhibition of human tumors following oral administration of ARQ 197 in multiple mouse xenograft efficacy studies. Cumulatively,these data suggest that ARQ 197,currently in phase II clinical trials,is a promising agent for targeting cancers in which c-Met-driven signaling is important for their survival and proliferation.
View Publication
产品类型:
产品号#:
产品名:
文献
Ng S-Y et al. (FEB 2012)
The EMBO journal 31 3 522--33
Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors.
Long non-coding RNAs (lncRNAs) are a numerous class of newly discovered genes in the human genome,which have been proposed to be key regulators of biological processes,including stem cell pluripotency and neurogenesis. However,at present very little functional characterization of lncRNAs in human differentiation has been carried out. In the present study,we address this using human embryonic stem cells (hESCs) as a paradigm for pluripotency and neuronal differentiation. With a newly developed method,hESCs were robustly and efficiently differentiated into neurons,and we profiled the expression of thousands of lncRNAs using a custom-designed microarray. Some hESC-specific lncRNAs involved in pluripotency maintenance were identified,and shown to physically interact with SOX2,and PRC2 complex component,SUZ12. Using a similar approach,we identified lncRNAs required for neurogenesis. Knockdown studies indicated that loss of any of these lncRNAs blocked neurogenesis,and immunoprecipitation studies revealed physical association with REST and SUZ12. This study indicates that lncRNAs are important regulators of pluripotency and neurogenesis,and represents important evidence for an indispensable role of lncRNAs in human brain development.
View Publication