Huang S-H et al. (JAN 2018)
The Journal of clinical investigation
Latent HIV reservoirs exhibit inherent resistance to elimination by CD8+ T cells.
The presence of persistent,latent HIV reservoirs in CD4+ T cells obstructs current efforts to cure infection. The so-called kick-and-kill paradigm proposes to purge these reservoirs by combining latency-reversing agents with immune effectors such as cytotoxic T lymphocytes. Support for this approach is largely based on success in latency models,which do not fully reflect the makeup of latent reservoirs in individuals on long-term antiretroviral therapy (ART). Recent studies have shown that CD8+ T cells have the potential to recognize defective proviruses,which comprise the vast majority of all infected cells,and that the proviral landscape can be shaped over time due to in vivo clonal expansion of infected CD4+ T cells. Here,we have shown that treating CD4+ T cells from ART-treated individuals with combinations of potent latency-reversing agents and autologous CD8+ T cells consistently reduced cell-associated HIV DNA,but failed to deplete replication-competent virus. These CD8+ T cells recognized and potently eliminated CD4+ T cells that were newly infected with autologous reservoir virus,ruling out a role for both immune escape and CD8+ T cell dysfunction. Thus,our results suggest that cells harboring replication-competent HIV possess an inherent resistance to CD8+ T cells that may need to be addressed to cure infection.
View Publication
产品类型:
产品号#:
19052
19052RF
产品名:
EasySep™人CD4+ T细胞富集试剂盒
RoboSep™ 人CD4+ T细胞富集试剂盒含滤芯吸头
文献
Oikawa T et al. (OCT 2015)
Nature communications 6 8070
Model of fibrolamellar hepatocellular carcinomas reveals striking enrichment in cancer stem cells.
The aetiology of human fibrolamellar hepatocellular carcinomas (hFL-HCCs),cancers occurring increasingly in children to young adults,is poorly understood. We present a transplantable tumour line,maintained in immune-compromised mice,and validate it as a bona fide model of hFL-HCCs by multiple methods. RNA-seq analysis confirms the presence of a fusion transcript (DNAJB1-PRKACA) characteristic of hFL-HCC tumours. The hFL-HCC tumour line is highly enriched for cancer stem cells as indicated by limited dilution tumourigenicity assays,spheroid formation and flow cytometry. Immunohistochemistry on the hFL-HCC model,with parallel studies on 27 primary hFL-HCC tumours,provides robust evidence for expression of endodermal stem cell traits. Transcriptomic analyses of the tumour line and of multiple,normal hepatic lineage stages reveal a gene signature for hFL-HCCs closely resembling that of biliary tree stem cells--newly discovered precursors for liver and pancreas. This model offers unprecedented opportunities to investigate mechanisms underlying hFL-HCCs pathogenesis and potential therapies.
View Publication
产品类型:
产品号#:
05707
产品名:
NeuroCult™化学解离试剂盒(小鼠)
文献
C. L. Hodgkinson et al. (AUG 2014)
Nature medicine 20 8 897--903
Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer.
Small-cell lung cancer (SCLC),an aggressive neuroendocrine tumor with early dissemination and dismal prognosis,accounts for 15-20{\%} of lung cancer cases and ∼200,000 deaths each year. Most cases are inoperable,and biopsies to investigate SCLC biology are rarely obtainable. Circulating tumor cells (CTCs),which are prevalent in SCLC,present a readily accessible 'liquid biopsy'. Here we show that CTCs from patients with either chemosensitive or chemorefractory SCLC are tumorigenic in immune-compromised mice,and the resultant CTC-derived explants (CDXs) mirror the donor patient's response to platinum and etoposide chemotherapy. Genomic analysis of isolated CTCs revealed considerable similarity to the corresponding CDX. Most marked differences were observed between CDXs from patients with different clinical outcomes. These data demonstrate that CTC molecular analysis via serial blood sampling could facilitate delivery of personalized medicine for SCLC. CDXs are readily passaged,and these unique mouse models provide tractable systems for therapy testing and understanding drug resistance mechanisms.
View Publication
产品类型:
产品号#:
15127
15167
15137
15177
产品名:
含抗CD36的RosetteSep™ CTC富集抗体混合物
含抗CD36的 RosetteSep™ CTC富集抗体混合物
含抗CD56的RosetteSep™ CTC富集抗体混合物
含抗CD56的RosetteSep™ CTC富集抗体混合物
文献
S. Downey-Kopyscinski et al. (OCT 2018)
Blood advances 2 19 2443--2451
An inhibitor of proteasome $\beta$2 sites sensitizes myeloma cells to immunoproteasome inhibitors.
Proteasome inhibitors bortezomib,carfilzomib and ixazomib (approved by the US Food and Drug Administration [FDA]) induce remissions in patients with multiple myeloma (MM),but most patients eventually become resistant. MM and other hematologic malignancies express ubiquitous constitutive proteasomes and lymphoid tissue-specific immunoproteasomes; immunoproteasome expression is increased in resistant patients. Immunoproteasomes contain 3 distinct pairs of active sites,$\beta$5i,$\beta$1i,and $\beta$2i,which are different from their constitutive $\beta$5c,$\beta$1c,and $\beta$2c counterparts. Bortezomib and carfilzomib block $\beta$5c and $\beta$5i sites. We report here that pharmacologically relevant concentrations of $\beta$5i-specific inhibitor ONX-0914 show cytotoxicity in MM cell lines similar to that of carfilzomib and bortezomib. In addition,increasing immunoproteasome expression by interferon-$\gamma$ increases sensitivity to ONX-0914 but not to carfilzomib. LU-102,an inhibitor of $\beta$2 sites,dramatically sensitizes MM cell lines and primary cells to ONX-0914. ONX-0914 synergizes with all FDA-approved proteasome inhibitors in MM in vitro and in vivo. Thus,immunoproteasome inhibitors,currently in clinical trials for the treatment of autoimmune diseases,should also be considered for the treatment of MM.
View Publication
产品类型:
产品号#:
17877
17877RF
产品名:
EasySep™人CD138正选试剂盒 II
RoboSep™ 人CD138正选试剂盒 II
文献
A. R. Lefferts et al. ( 2022)
Frontiers in immunology 13 932393
Cytokine competent gut-joint migratory T Cells contribute to inflammation in the joint.
Although studies have identified the presence of gut-associated cells in the enthesis of joints affected by spondylarthritis (SpA),a direct link through cellular transit between the gut and joint has yet to be formally demonstrated. Using KikGR transgenic mice to label in situ and track cellular trafficking from the distal colon to the joint under inflammatory conditions of both the gut and joint,we demonstrate bona-fide gut-joint trafficking of T cells from the colon epithelium,also called intraepithelial lymphocytes (IELs),to distal sites including joint enthesis,the pathogenic site of SpA. Similar to patients with SpA,colon IELs from the TNF$\Delta$ARE/+ mouse model of inflammatory bowel disease and SpA display heightened TNF production upon stimulation. Using ex vivo stimulation of photo-labeled gut-joint trafficked T cells from the popliteal lymph nodes of KikGR and KikGR TNF$\Delta$ARE/+ we saw that the CD4+ photo-labeled population was highly enriched for IL-17 competence in healthy as well as arthritic mice,however in the TNF$\Delta$ARE/+ mice these cells were additionally enriched for TNF. Using transfer of magnetically isolated IELs from TNF+/+ and TNF$\Delta$ARE/+ donors into Rag1 -/- hosts,we confirmed that IELs can exacerbate inflammatory processes in the joint. Finally,we blocked IEL recruitment to the colon epithelium using broad spectrum antibiotics in TNF$\Delta$ARE/+ mice. Antibiotic-treated mice had reduced gut-joint IEL migration,contained fewer Il-17A and TNF competent CD4+ T cells,and lessened joint pathology compared to untreated littermate controls. Together these results demonstrate that pro-inflammatory colon-derived IELs can exacerbate inflammatory responses in the joint through systemic trafficking,and that interference with this process through gut-targeted approaches has therapeutic potential in SpA.
View Publication
产品类型:
产品号#:
产品名:
文献
Wang J et al. (JUL 2014)
Biochemical and biophysical research communications 450 1 568--74
A heterocyclic molecule kartogenin induces collagen synthesis of human dermal fibroblasts by activating the smad4/smad5 pathway.
Declined production of collagen by fibroblasts is one of the major causes of aging appearance. However,only few of compounds found in cosmetic products are able to directly increase collagen synthesis. A novel small heterocyclic compound called kartogenin (KGN) was found to stimulate collagen synthesis of mesenchymal stem cells (MSCs). So,we hypothesized and tested that if KGN could be applied to stimulate the collagen synthesis of fibroblasts. Human dermal fibroblasts in vitro were treated with various concentrations of KGN,with dimethyl sulfoxide (DMSO) serving as the negative control. Real-time reverse-transcription polymerase chain reaction,Western blot,and immunofluorescence analyses were performed to examine the expression of collagen and transforming growth factor beta (TGF-β) signaling pathway. The production of collagen was also tested in vivo by Masson's trichrome stain and immunohistochemistry in the dermis of mice administrated with KGN. Results showed that without obvious influence on fibroblasts' apoptosis and viability,KGN stimulated type-I collagen synthesis of fibroblasts at the mRNA and protein levels in a time-dependent manner,but KGN did not induce expression of α-skeletal muscle actin (α-sma) or matrix metallopeptidase1 (MMP1),MMP9 in vitro. Smad4/smad5 of the TGF-β signaling pathway was activated by KGN while MAPK signaling pathway remained unchanged. KGN also increased type-I collagen synthesis in the dermis of BALB/C mice. Our results indicated that KGN promoted the type-I collagen synthesis of dermal fibroblasts in vitro and in the dermis of mice through activation of the smad4/smad5 pathway. This molecule could be used in wound healing,tissue engineering of fibroblasts,or aesthetic and reconstructive procedures.
View Publication
产品类型:
产品号#:
产品名:
文献
Cretenet G et al. (APR 2016)
Scientific Reports 6 24129
Cell surface Glut1 levels distinguish human CD4 and CD8 T lymphocyte subsets with distinct effector functions.
CD4 and CD8 T lymphocyte activation requires the generation of sufficient energy to support new biosynthetic demands. Following T cell receptor (TCR) engagement,these requirements are met by an increased glycolysis,due,at least in part,to induction of the Glut1 glucose transporter. As Glut1 is upregulated on tumor cells in response to hypoxia,we assessed whether surface Glut1 levels regulate the antigen responsiveness of human T lymphocytes in both hypoxic and atmospheric oxygen conditions. Notably,Glut1 upregulation in response to TCR stimulation was significantly higher in T lymphocytes activated under hypoxic as compared to atmospheric oxygen conditions. Furthermore,TCR-stimulated human T lymphocytes sorted on the basis of Glut1-Lo and Glut1-Hi profiles maintained distinct characteristics,irrespective of the oxygen tension. While T cells activated in hypoxia divided less than those activated in atmospheric oxygen,Glut1-Hi lymphocytes exhibited increased effector phenotype acquisition,augmented proliferation,and an inverted CD4/CD8 ratio in both oxygen conditions. Moreover,Glut1-Hi T lymphocytes exhibited a significantly enhanced ability to produce IFN-γ and this secretion potential was completely dependent on continued glycolysis. Thus,Glut1 surface levels identify human T lymphocytes with distinct effector functions in both hypoxic and atmospheric oxygen tensions.
View Publication
A Multi-Lineage Screen Reveals mTORC1 Inhibition Enhances Human Pluripotent Stem Cell Mesendoderm and Blood Progenitor Production.
Human pluripotent stem cells (hPSCs) exist in heterogeneous micro-environments with multiple subpopulations,convoluting fate-regulation analysis. We patterned hPSCs into engineered micro-environments and screened responses to 400 small-molecule kinase inhibitors,measuring yield and purity outputs of undifferentiated,neuroectoderm,mesendoderm,and extra-embryonic populations. Enrichment analysis revealed mammalian target of rapamycin (mTOR) inhibition as a strong inducer of mesendoderm. Dose responses of mTOR inhibitors such as rapamycin synergized with Bone Morphogenetic protein 4 (BMP4) and activin A to enhance the yield and purity of BRACHYURY-expressing cells. Mechanistically,small interfering RNA knockdown of RAPTOR,a component of mTOR complex 1,phenocopied the mesendoderm-enhancing effects of rapamycin. Functional analysis during mesoderm and endoderm differentiation revealed that mTOR inhibition increased the output of hemogenic endothelial cells 3-fold,with a concomitant enhancement of blood colony-forming cells. These data demonstrate the power of our multi-lineage screening approach and identify mTOR signaling as a node in hPSC differentiation to mesendoderm and its derivatives.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Yechikov S et al. (JUL 2016)
Stem Cells
Same-Single-Cell Analysis of Pacemaker-Specific Markers in Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Subtypes Classified by Electrophysiology
Insights into the expression of pacemaker-speci�?c markers in human induced pluripotent stemcell (hiPSC)-derived cardiomyocyte subtypes can facilitate the enrichment and track differentia-tion and maturation of hiPSC-derived pacemaker-like cardiomyocytes. To date,no study hasdirectly assessed gene expression in each pacemaker-,atria-,and ventricular-like cardiomyocytesubtype derived from hiPSCs since currently the subtypes of these immature cardiomyocytescan only be identi�?ed by action potential pro�?les. Traditional acquisition of action potentialsusing patch-clamp recordings renders the cells unviable for subsequent analysis. We circum-vented these issues by acquiring the action potential pro�?le of a single cell optically followedby assessment of protein expression through immunostaining in that same cell. Our same-single-cell analysis for the �?rst time revealed expression of proposed pacemaker-speci�?cmarkers—hyperpolarization-activated cyclic nucleotide-modulated (HCN)4 channel and Islet(Isl)1—at the protein level in all three hiPSC-derived cardiomyocyte subtypes. HCN4 expressionwas found to be higher in pacemaker-like hiPSC-derived cardiomyocytes than atrial- andventricular-like subtypes but its downregulation over time in all subtypes diminished the differ-ences. Isl1 expression in pacemaker-like hiPSC-derived cardiomyocytes was initially not statisti-cally different than the contractile subtypes but did become statistically higher than ventricular-like cells with time. Our observations suggest that although HCN4 and Isl1 are differentiallyexpressed in hiPSC-derived pacemaker-like relative to ventricular-like cardiomyocytes,thesemarkers alone are insuf�?cient in identifying hiPSC-derived pacemaker-like cardiomyocytes.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Jones RB et al. (SEP 2009)
Journal of virology 83 17 8722--32
Human immunodeficiency virus type 1 escapes from interleukin-2-producing CD4+ T-cell responses without high-frequency fixation of mutations.
The presence of interleukin-2 (IL-2)-producing human immunodeficiency virus type 1 (HIV-1)-specific CD4(+) T-cell responses has been associated with the immunological control of HIV-1 replication; however,the causal relationship between these factors remains unclear. Here we show that IL-2-producing HIV-1-specific CD4(+) T cells can be cloned from acutely HIV-1-infected individuals. Despite the early presence of these cells,each of the individuals in the present study exhibited progressive disease,with one individual showing rapid progression. In this rapid progressor,three IL-2-producing HIV-1 Gag-specific CD4(+) T-cell responses were identified and mapped to the following optimal epitopes: HIVWASRELER,REPRGSDIAGT,and FRDYVDRFYKT. Responses to these epitopes in peripheral blood mononuclear cells were monitored longitudinally to textgreater1 year postinfection,and contemporaneous circulating plasma viruses were sequenced. A variant of the FRDYVDRFYKT epitope sequence,FRDYVDQFYKT,was observed in 1/21 plasma viruses sequenced at 5 months postinfection and 1/10 viruses at 7 months postinfection. This variant failed to stimulate the corresponding CD4(+) T-cell clone and thus constitutes an escape mutant. Responses to each of the three Gag epitopes were rapidly lost,and this loss was accompanied by a loss of antigen-specific cells in the periphery as measured by using an FRDYVDRFYKT-presenting major histocompatibility complex class II tetramer. Highly active antiretroviral therapy was associated with the reemergence of FRDYVDRFYKT-specific cells by tetramer. Thus,our data support that IL-2-producing HIV-1-specific CD4(+) T-cell responses can exert immune pressure during early HIV-1 infection but that the inability of these responses to enforce enduring control of viral replication is related to the deletion and/or dysfunction of HIV-1-specific CD4(+) T cells rather than to the fixation of escape mutations at high frequencies.
View Publication
产品类型:
产品号#:
19052
19052RF
产品名:
EasySep™人CD4+ T细胞富集试剂盒
RoboSep™ 人CD4+ T细胞富集试剂盒含滤芯吸头
文献
Wang J et al. (NOV 2013)
Biomaterials 34 35 8878--8886
Effect of engineered anisotropy on the susceptibility of human pluripotent stem cell-derived ventricular cardiomyocytes to arrhythmias
Human (h) pluripotent stem cells (PSC) such as embryonic stem cells (ESC) can be directed into cardiomyocytes (CMs),representing a potential unlimited cell source for disease modeling,cardiotoxicity screening and myocardial repair. Although the electrophysiology of single hESC-CMs is now better defined,their multi-cellular arrhythmogenicity has not been thoroughly assessed due to the lack of a suitable experimental platform. Indeed,the generation of ventricular (V) fibrillation requires single-cell triggers as well as sustained multi-cellular reentrant events. Although native VCMs are aligned in a highly organized fashion such that electrical conduction is anisotropic for coordinated contractions,hESC-derived CM (hESC-CM) clusters are heterogenous and randomly organized,and therefore not representative of native conditions. Here,we reported that engineered alignment of hESC-VCMs on biomimetic grooves uniquely led to physiologically relevant responses. Aligned but not isotropic control preparations showed distinct longitudinal (L) and transverse (T) conduction velocities (CV),resembling the native human V anisotropic ratio (AR=LCV/TCV=1.8-2.0). Importantly,the total incidence of spontaneous and inducible arrhythmias significantly reduced from 57% in controls to 17-23% of aligned preparations,thereby providing a physiological baseline for assessing arrhythmogenicity. As such,promotion of pro-arrhythmic effect (e.g.,spatial dispersion by ?? adrenergic stimulation) could be better predicted. Mechanistically,such anisotropy-induced electrical stability was not due to maturation of the cellular properties of hESC-VCMs but their physical arrangement. In conclusion,not only do functional anisotropic hESC-VCMs engineered by multi-scale topography represent a more accurate model for efficacious drug discovery and development as well as arrhythmogenicity screening (of pharmacological and genetic factors),but our approach may also lead to future transplantable prototypes with improved efficacy and safety against arrhythmias. ?? 2013.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Deng M et al. (JAN 2018)
European Journal of Neuroscience 47 2 150--157
Preservation of neuronal functions by exosomes derived from different human neural cell types under ischemic conditions
Stem cell-based therapies have been reported in protecting cerebral infarction-induced neuronal dysfunction and death. However,most studies used rat/mouse neuron as model cell when treated with stem cell or exosomes. Whether these findings can be translated from rodent to humans has been in doubt. Here,we used human embryonic stem cell-derived neurons to detect the protective potential of exosomes against ischemia. Neurons were treated with in vitro oxygen-glucose deprivation (OGD) for 1 h. For treatment group,different exosomes were derived from neuron,embryonic stem cell,neural progenitor cell and astrocyte differentiated from H9 human embryonic stem cell and added to culture medium 30 min after OGD (100 μg/mL). Western blotting was performed 12 h after OGD,while cell counting and electrophysiological recording were performed 48 h after OGD. We found that these exosomes attenuated OGD-induced neuronal death,Mammalian target of rapamycin (mTOR),pro-inflammatory and apoptotic signaling pathway changes,as well as basal spontaneous synaptic transmission inhibition in varying degrees. The results implicate the protective effect of exosomes on OGD-induced neuronal death and dysfunction in human embryonic stem cell-derived neurons,potentially through their modulation on mTOR,pro-inflammatory and apoptotic signaling pathways.
View Publication