Generation of Human Induced Pluripotent Stem Cells Using RNA-Based Sendai Virus System and Pluripotency Validation of the Resulting Cell Population.
Human induced pluripotent stem cells (hiPSCs) provide a platform for studying human disease in vitro,increase our understanding of human embryonic development,and provide clinically relevant cell types for transplantation,drug testing,and toxicology studies. Since their discovery,numerous advances have been made in order to eliminate issues such as vector integration into the host genome,low reprogramming efficiency,incomplete reprogramming and acquisition of genomic instabilities. One of the ways to achieve integration-free reprogramming is by using RNA-based Sendai virus. Here we describe a method to generate hiPSCs with Sendai virus in both feeder-free and feeder-dependent culture systems. Additionally,we illustrate methods by which to validate pluripotency of the resulting stem cell population.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Zhang Y et al. (MAR 2015)
Molecular cancer 14 1 56
Sp1 and c-Myc modulate drug resistance of leukemia stem cells by regulating survivin expression through the ERK-MSK MAPK signaling pathway.
BACKGROUND Acute myeloid leukemia (AML) is initiated and maintained by a subset of self-renewing leukemia stem cells (LSCs),which contribute to the progression,recurrence and therapeutic resistance of leukemia. However,the mechanisms underlying the maintenance of LSCs drug resistance have not been fully defined. In this study,we attempted to elucidate the mechanisms of LSCs drug resistance. METHODS We performed reverse phase protein arrays to analyze the expression of anti-apoptotic proteins in the LSC-enriched leukemia cell line KG-1a. Immuno-blotting,cell viability and clinical AML samples were evaluated to verify the micro-assay results. The characteristics and transcriptional regulation of survivin were analyzed with the relative luciferase reporter assay,mutant constructs,chromatin immuno-precipitation (ChIP),quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR),and western blotting. The levels of Sp1,c-Myc,phospho-extracellular signal-regulated kinase (p-ERK),phospho-mitogen and stress-activated protein kinase (p-MSK) were investigated in paired CD34+ and CD34- AML patient samples. RESULTS Survivin was highly over-expressed in CD34 + CD38- KG-1a cells and paired CD34+ AML patients compared with their differentiated counterparts. Functionally,survivin contributes to the drug resistance of LSCs,and Sp1 and c-Myc concurrently regulate levels of survivin transcription. Clinically,Sp1 and c-Myc were significantly up-regulated and positively correlated with survivin in CD34+ AML patients. Moreover,Sp1 and c-Myc were further activated by the ERK/MSK mitogen-activated protein kinase (MAPK) signaling pathway,modulating survivin levels. CONCLUSION Our findings demonstrated that ERK/MSK/Sp1/c-Myc axis functioned as a critical regulator of survivin expression in LSCs,offering a potential new therapeutic strategy for LSCs therapy.
View Publication
产品类型:
产品号#:
07930
07931
07940
07955
07959
产品名:
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
文献
Cao Y et al. (MAR 2016)
Journal of Immunology 196 5 2075--84
Autoreactive T Cells from Patients with Myasthenia Gravis Are Characterized by Elevated IL-17, IFN-γ, and GM-CSF and Diminished IL-10 Production.
Myasthenia gravis (MG) is a prototypical autoimmune disease that is among the few for which the target Ag and the pathogenic autoantibodies are clearly defined. The pathology of the disease is affected by autoantibodies directed toward the acetylcholine receptor (AChR). Mature,Ag-experienced B cells rely on the action of Th cells to produce these pathogenic Abs. The phenotype of the MG Ag-reactive T cell compartment is not well defined; thus,we sought to determine whether such cells exhibit both a proinflammatory and a pathogenic phenotype. A novel T cell library assay that affords multiparameter interrogation of rare Ag-reactive CD4(+) T cells was applied. Proliferation and cytokine production in response to both AChR and control Ags were measured from 3120 T cell libraries derived from 11 MG patients and paired healthy control subjects. The frequency of CCR6(+) memory T cells from MG patients proliferating in response to AChR-derived peptides was significantly higher than that of healthy control subjects. Production of both IFN-γ and IL-17,in response to AChR,was also restricted to the CCR6(+) memory T cell compartment in the MG cohort,indicating a proinflammatory phenotype. These T cells also included an elevated expression of GM-CSF and absence of IL-10 expression,indicating a proinflammatory and pathogenic phenotype. This component of the autoimmune response in MG is of particular importance when considering the durability of MG treatment strategies that eliminate B cells,because the autoreactive T cells could renew autoimmunity in the reconstituted B cell compartment with ensuing clinical manifestations.
View Publication
产品类型:
产品号#:
17952
17952RF
产品名:
EasySep™人CD4+ T细胞分选试剂盒
RoboSep™ 人CD4+ T细胞分选试剂盒
文献
Tropepe V et al. (APR 2001)
Neuron 30 1 65--78
Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism.
Little is known about how neural stem cells are formed initially during development. We investigated whether a default mechanism of neural specification could regulate acquisition of neural stem cell identity directly from embryonic stem (ES) cells. ES cells cultured in defined,low-density conditions readily acquire a neural identity. We characterize a novel primitive neural stem cell as a component of neural lineage specification that is negatively regulated by TGFbeta-related signaling. Primitive neural stem cells have distinct growth factor requirements,express neural precursor markers,generate neurons and glia in vitro,and have neural and non-neural lineage potential in vivo. These results are consistent with a default mechanism for neural fate specification and support a model whereby definitive neural stem cell formation is preceded by a primitive neural stem cell stage during neural lineage commitment.
View Publication
产品类型:
产品号#:
产品名:
文献
Jing W et al. (OCT 2017)
Cancer research 77 20 5676--5686
T Cells Deficient in Diacylglycerol Kinase ζ Are Resistant to PD-1 Inhibition and Help Create Persistent Host Immunity to Leukemia.
Efforts to improve the efficacy of adoptive T-cell therapies and immune checkpoint therapies in myelogenous leukemia are desired. In this study,we evaluated the antileukemia activity of adoptively transferred polyclonal cancer antigen-reactive T cells deficient in the regulator diacylglycerol kinase zeta (DGKζ) with or without PD-1/PD-L1 blockade. In the C1498 mouse model of myeloid leukemia,we showed that leukemia was eradicated more effectively in DGKζ-deficient (DGKζ-/-) mice than wild-type mice. T cells transferred from DGKζ-deficient mice to wild-type tumor-bearing recipients conferred this benefit. Leukemia clearance was similar to mice treated with anti-PD-L1. Strikingly,we found that the activity of adoptively transferred DGKζ-/- T cells relied partly on induction of sustainable host T-cell immunity. Transferring DGKζ-deficient T cells increased the levels of IFNγ and other cytokines in recipient mice,especially with coadministration of anti-PD-L1. Overall,our results offered evidence that targeting DGKζ may leverage the efficacy of adoptive T-cell and immune checkpoint therapies in leukemia treatment. Furthermore,they suggest that DGKζ targeting might decrease risks of antigen escape or resistance to immune checkpoint blockade. Cancer Res; 77(20); 5676-86. textcopyright2017 AACR.
View Publication
产品类型:
产品号#:
19851
19851RF
产品名:
EasySep™小鼠T细胞分选试剂盒
RoboSep™ 小鼠T细胞分选试剂盒
文献
J. R. Giles et al. (nov 2022)
Nature immunology 23 11 1600--1613
Shared and distinct biological circuits in effector, memory and exhausted CD8+ T cells revealed by temporal single-cell transcriptomics and epigenetics.
Na{\{i}}ve CD8+ T cells can differentiate into effector (Teff) memory (Tmem) or exhausted (Tex) T cells. These developmental pathways are associated with distinct transcriptional and epigenetic changes that endow cells with different functional capacities and therefore therapeutic potential. The molecular circuitry underlying these developmental trajectories and the extent of heterogeneity within Teff Tmem and Tex populations remain poorly understood. Here we used the lymphocytic choriomeningitis virus model of acute-resolving and chronic infection to address these gaps by applying longitudinal single-cell RNA-sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) analyses. These analyses uncovered new subsets including a subpopulation of Tex cells expressing natural killer cell-associated genes that is dependent on the transcription factor Zeb2 as well as multiple distinct TCF-1+ stem/progenitor-like subsets in acute and chronic infection. These data also revealed insights into the reshaping of Tex subsets following programmed death 1 (PD-1) pathway blockade and identified a key role for the cell stress regulator Btg1 in establishing the Tex population. Finally these results highlighted how the same biological circuits such as cytotoxicity or stem/progenitor pathways can be used by CD8+ T cell subsets with highly divergent underlying chromatin landscapes generated during different infections."
View Publication
Lichterfeld M et al. (SEP 2004)
The Journal of experimental medicine 200 6 701--12
Loss of HIV-1-specific CD8+ T cell proliferation after acute HIV-1 infection and restoration by vaccine-induced HIV-1-specific CD4+ T cells.
Virus-specific CD8(+) T cells are associated with declining viremia in acute human immunodeficiency virus (HIV)1 infection,but do not correlate with control of viremia in chronic infection,suggesting a progressive functional defect not measured by interferon gamma assays presently used. Here,we demonstrate that HIV-1-specific CD8(+) T cells proliferate rapidly upon encounter with cognate antigen in acute infection,but lose this capacity with ongoing viral replication. This functional defect can be induced in vitro by depletion of CD4(+) T cells or addition of interleukin 2-neutralizing antibodies,and can be corrected in chronic infection in vitro by addition of autologous CD4(+) T cells isolated during acute infection and in vivo by vaccine-mediated induction of HIV-1-specific CD4(+) T helper cell responses. These data demonstrate a loss of HIV-1-specific CD8(+) T cell function that not only correlates with progressive infection,but also can be restored in chronic infection by augmentation of HIV-1-specific T helper cell function. This identification of a reversible defect in cell-mediated immunity in chronic HIV-1 infection has important implications for immunotherapeutic interventions.
View Publication
产品类型:
产品号#:
15023
15063
产品名:
RosetteSep™ 人CD8+ T细胞富集抗体混合物
RosetteSep™人CD8+ T细胞富集抗体混合物
文献
Arbab AS et al. (MAR 2006)
Stem cells (Dayton,Ohio) 24 3 671--8
Magnetic resonance imaging and confocal microscopy studies of magnetically labeled endothelial progenitor cells trafficking to sites of tumor angiogenesis.
UNLABELLED: AC133 cells,a subpopulation of CD34+ hematopoietic stem cells,can transform into endothelial cells that may integrate into the neovasculature of tumors or ischemic tissue. Most current imaging modalities do not allow monitoring of early migration and incorporation of endothelial progenitor cells (EPCs) into tumor neovasculature. The goals of this study were to use magnetic resonance imaging (MRI) to track the migration and incorporation of intravenously injected,magnetically labeled EPCs into the blood vessels in a rapidly growing flank tumor model and to determine whether the pattern of EPC incorporation is related to the time of injection or tumor size. MATERIALS AND METHODS: EPCs labeled with ferumoxide-protamine sulfate (FePro) complexes were injected into mice bearing xenografted glioma,and MRI was obtained at different stages of tumor development and size. RESULTS: Migration and incorporation of labeled EPCs into tumor neovasculature were detected as low signal intensity on MRI at the tumor periphery as early as 3 days after EPC administration in preformed tumors. However,low signal intensities were not observed in tumors implanted at the time of EPC administration until tumor size reached 1 cm at 12 to 14 days. Prussian blue staining showed iron-positive cells at the sites corresponding to low signal intensity on MRI. Confocal microscopy showed incorporation into the neovasculature,and immunohistochemistry clearly demonstrated the transformation of the administered EPCs into endothelial cells. CONCLUSION: MRI demonstrated the incorporation of FePro-labeled human CD34+/AC133+ EPCs into the neovasculature of implanted flank tumors.
View Publication
产品类型:
产品号#:
产品名:
文献
Thum T et al. (NOV 2005)
Journal of the American College of Cardiology 46 9 1693--701
Suppression of endothelial progenitor cells in human coronary artery disease by the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine.
OBJECTIVES: We tested the hypothesis that asymmetric dimethylarginine (ADMA) may be an endogenous inhibitor of endothelial progenitor cells (EPCs). BACKGROUND: Endothelial progenitor cells play a pivotal role in regeneration of injured endothelium,thereby limiting the formation of atherosclerotic lesions. Reduced numbers of EPCs may affect progression of coronary artery disease. Regulation of EPC mobilization and function is mediated in part by nitric oxide (NO). Endogenous inhibitors of NO synthases,such as ADMA,contribute to endothelial dysfunction and injury. METHODS: We used flow cytometry and in vitro assays to investigate the relationship between EPC number and function with ADMA plasma levels in patients with stable angina. RESULTS: The plasma concentration of ADMA was related to the severity of coronary artery disease and correlated inversely with the number of circulating CD34+/CD133+ progenitor cells (r = -0.69; p textless 0.0001) and endothelial colony forming units (CFUs) (r = -0.75; p textless 0.0001). Adjusting for all patient characteristics,we confirmed these findings in multivariate regression analyses. In vitro differentiation of EPCs was repressed by ADMA in a concentration-dependent manner. Compared with untreated cells,ADMA reduced EPC incorporation into endothelial tube-like structures to 27 +/- 11% (p textless 0.001). Asymmetric dimethylarginine repressed the formation of CFUs from cultured peripheral blood mononuclear cells to 35 +/- 7% (p textless 0.001). Asymmetric dimethylarginine decreased endothelial nitric oxide synthase activity in EPCs to 64 +/- 6% (p textless 0.05) when compared with controls. Co-incubation with the hydroxymethyl glutaryl coenzyme A reductase inhibitor rosuvastatin abolished the detrimental effects of ADMA. CONCLUSIONS: Asymmetric dimethylarginine is an endogenous inhibitor of mobilization,differentiation,and function of EPCs. This contributes to the cardiovascular risk in patients with high ADMA levels and may explain low numbers and function of EPCs in patients with coronary artery disease.
View Publication
产品类型:
产品号#:
05900
05950
产品名:
文献
Zhu H et al. (JUN 2012)
Theriogenology 77 9 1939--50
Effect of GSK-3 inhibitor on the proliferation of multipotent male germ line stem cells (mGSCs) derived from goat testis
The glycogen synthase kinase 3 (GSK3) inhibitor,6-bromoindirubin-3'-oxime (BIO),is a key regulator of many signaling pathways to maintain pluripotency of human and mouse embryonic stem cells (ESCs). However,the effect of BIO on derivation of dairy goat male germline stem cells (mGSCs) remains unclear. The objectives of this study were to investigate whether BIO influences derivation of dairy goat mGSCs. Dairy goat mGSCs were cultured in mTeSR containing BIO medium and its effects on the proliferation ability of goat mGSCs (derived from goats ≤2 mo of age) were evaluated by 5-Bromo-2-deoxyuridine (BrdU) incorporation and alkaline phosphatase (AP) staining. Furthermore,its effects on maintenance of the undifferentiated state of mGSCs in late passages of cultures,as well as the capacity of mGSCs to differentiate into embryoid bodies (EBs) were examined. The presence of BIO increased the mitosis index and the number of AP positive colonies,as well as expression of pluripotent markers,Oct4,Nanog,Sox2,C-myc,Klf4,E-cadherin,and the proliferative markers,Pcna and C-myc. In contrast,there was no significant change in expression of apoptosis markers,P53,P21 and cyclin-related genes (Cyclin A,CDK2,Cyclin D1),as determined by RT-PCR analysis. When mGSCs were cultured in mTeSR medium containing BIO,EBs were formed,which were capable of further differentiating into various cell types found in the three embryonic germ layers,as determined by immunofluorescence and/or histologic staining. In conclusion,adding BIO to cultures BIO significantly promoted establishment of goat mGSC colonies and maintained their undifferentiated state.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
文献
Windmolders S et al. (JAN 2014)
Journal of molecular and cellular cardiology 66 177--188
Mesenchymal stem cell secreted platelet derived growth factor exerts a pro-migratory effect on resident Cardiac Atrial appendage Stem Cells.
Mesenchymal stem cells (MSCs) modulate cardiac healing after myocardial injury through the release of paracrine factors,but the exact mechanisms are still unknown. One possible mechanism is through mobilization of endogenous cardiac stem cells (CSCs). This study aimed to test the pro-migratory effect of MSC conditioned medium (MSC-CM) on endogenous CSCs from human cardiac tissue. By using a three-dimensional collagen assay,we found that MSC-CM improved migration of cells from human cardiac tissue. Cell counts,perimeter and area measurements were utilized to quantify migration effects. To examine whether resident stem cells were among the migrating cells,specific stem cell properties were investigated. The migrating cells displayed strong similarities with resident Cardiac Atrial appendage Stem Cells (CASCs),including a clonogenic potential of ˜21.5% and expression of pluripotency associated genes like Oct-4,Nanog,c-Myc and Klf-4. Similar to CASCs,migrating cells demonstrated high aldehyde dehydrogenase activity and were able to differentiate towards cardiomyocytes. Receptor tyrosine kinase analysis and collagen assays performed with recombinant platelet derived growth factor (PDGF)-AA and Imatinib Mesylate,a PDGF receptor inhibitor,suggested a role for the PDGF-AA/PDGF receptor $$ axis in enhancing the migration process of CASCs. In conclusion,our findings demonstrate that factors present in MSC-CM improve migration of resident stem cells from human cardiac tissue. These data open doors towards future therapies in which MSC secreted factors,like PDGF-AA,can be utilized to enhance the recruitment of CASCs towards the site of myocardial injury.
View Publication