Maurer MH et al. (MAR 2007)
Journal of proteome research 6 3 1198--208
Glycogen synthase kinase 3beta (GSK3beta) regulates differentiation and proliferation in neural stem cells from the rat subventricular zone.
On the basis of its inhibition by SB216763,we identified the multifunctional enzyme Glycogen Synthase Kinase 3beta (GSK3beta) as a central regulator for differentiation and cell survival of adult neural stem cells. Detected by proteomic approaches,members of the Wnt/beta-catenin signaling pathway appear to participate in enhanced neuronal differentiation and activated transcription of beta-catenin target genes during GSK3beta inhibition,associated with decreased apoptosis.
View Publication
Crebbp haploinsufficiency in mice alters the bone marrow microenvironment, leading to loss of stem cells and excessive myelopoiesis.
CREB-binding protein (CREBBP) is important for the cell-autonomous regulation of hematopoiesis,including the stem cell compartment. In the present study,we show that CREBBP plays an equally pivotal role in microenvironment-mediated regulation of hematopoiesis. We found that the BM microenvironment of Crebbp(+/-) mice was unable to properly maintain the immature stem cell and progenitor cell pools. Instead,it stimulates myeloid differentiation,which progresses into a myeloproliferation phenotype. Alterations in the BM microenvironment resulting from haploinsufficiency of Crebbp included a marked decrease in trabecular bone that was predominantly caused by increased osteoclastogenesis. Although CFU-fibroblast (CFU-F) and total osteoblast numbers were decreased,the bone formation rate was similar to that found in wild-type mice. At the molecular level,we found that the known hematopoietic modulators matrix metallopeptidase-9 (MMP9) and kit ligand (KITL) were decreased with heterozygous levels of Crebbp. Lastly,potentially important regulatory proteins,endothelial cell adhesion molecule 1 (ESAM1) and cadherin 5 (CDH5),were increased on Crebbp(+/-) endothelial cells. Our findings reveal that a full dose of Crebbp is essential in the BM microenvironment to maintain proper hematopoiesis and to prevent excessive myeloproliferation.
View Publication
产品类型:
产品号#:
03630
03434
03444
28600
产品名:
MethoCult™M3630
MethoCult™GF M3434
MethoCult™GF M3434
L-Calc™有限稀释软件
文献
Minami I et al. (NOV 2012)
Cell reports 2 5 1448--60
A small molecule that promotes cardiac differentiation of human pluripotent stem cells under defined, cytokine- and xeno-free conditions.
Human pluripotent stem cells (hPSCs),including embryonic stem cells and induced pluripotent stem cells,are potentially useful in regenerative therapies for heart disease. For medical applications,clinical-grade cardiac cells must be produced from hPSCs in a defined,cost-effective manner. Cell-based screening led to the discovery of KY02111,a small molecule that promotes differentiation of hPSCs to cardiomyocytes. Although the direct target of KY02111 remains unknown,results of the present study suggest that KY02111 promotes differentiation by inhibiting WNT signaling in hPSCs but in a manner that is distinct from that of previously studied WNT inhibitors. Combined use of KY02111 and WNT signaling modulators produced robust cardiac differentiation of hPSCs in a xeno-free,defined medium,devoid of serum and any kind of recombinant cytokines and hormones,such as BMP4,Activin A,or insulin. The methodology has potential as a means for the practical production of human cardiomyocytes for regeneration therapies.
View Publication
产品类型:
产品号#:
72122
72124
72582
产品名:
IWP-2
IWP-2
KY02111
文献
Hassan KA et al. (APR 2013)
Clinical cancer research : an official journal of the American Association for Cancer Research 19 8 1972--1980
Notch pathway activity identifies cells with cancer stem cell-like properties and correlates with worse survival in lung adenocarcinoma.
PURPOSE The cancer stem cell theory postulates that tumors contain a subset of cells with stem cell properties of self-renewal,differentiation,and tumor initiation. The purpose of this study is to determine the role of Notch activity in identifying lung cancer stem cells. EXPERIMENTAL DESIGN We investigated the role of Notch activity in lung adenocarcinoma using a Notch GFP reporter construct and a $$-secretase inhibitor (GSI),which inhibits Notch pathway activity. RESULTS Transduction of lung cancer cells with Notch GFP reporter construct identified a subset of cells with high Notch activity (GFP-bright). GFP-bright cells had the ability to form more tumor spheres in serum-free media and were able to generate both GFP-bright and GFP-dim (lower Notch activity) cell populations. GFP-bright cells were resistant to chemotherapy and were tumorigenic in serial xenotransplantation assays. Tumor xenografts of mice treated with GSI had decreased expression of downstream effectors of Notch pathway and failed to regenerate tumors upon reimplantation in NOD/SCID mice. Using multivariate analysis,we detected a statistically significant correlation between poor clinical outcome and Notch activity (reflected in increased Notch ligand expression or decreased expression of the negative modulators),in a group of 443 patients with lung adenocarcinoma. This correlation was further confirmed in an independent group of 89 patients with adenocarcinoma in which Hes-1 overexpression correlated with poor overall survival. CONCLUSIONS Notch activity can identify lung cancer stem cell-like population and its inhibition may be an appropriate target for treating lung adenocarcinoma.
View Publication
产品类型:
产品号#:
05620
产品名:
MammoCult™人培养基试剂盒
文献
Vazquez-Martin A et al. (NOV 2013)
Cell cycle (Georgetown,Tex.) 12 22 3471--3477
Reprogramming of non-genomic estrogen signaling by the stemness factor SOX2 enhances the tumor-initiating capacity of breast cancer cells.
The restoration of pluripotency circuits by the reactivation of endogenous stemness factors,such as SOX2,may provide a new paradigm in cancer development. The tumoral stem cell reprogramming hypothesis,i.e.,the ability of stemness factors to redirect normal and differentiated tumor cells toward a less-differentiated and stem-like state,adds new layers of complexity to cancer biology,because the effects of such reprogramming may remain dormant until engaged later in response to (epi)genetic and/or (micro)environmental events. To test this hypothesis,we utilized an in vitro model of a SOX2-overexpressing cancer stem cell (CSC)-like cellular state that was recently developed in our laboratory by employing Yamanaka's nuclear reprogramming technology in the estrogen receptor $$ (ER$$)-positive MCF-7 breast cancer cell line. Despite the acquisition of distinct molecular features that were compatible with a breast CSC-like cellular state,such as strong aldehyde dehydrogenase activity,as detected by ALDEFLUOR,and overexpression of the SSEA-4 and CD44 breast CSC markers,the tumor growth-initiating ability of SOX2-overexpressing CSC-like MCF-7 cells solely occurred in female nude mice supplemented with estradiol when compared with MCF-7 parental cells. Ser118 phosphorylation of estrogen receptor $$ (ER$$),which is a pivotal integrator of the genomic and nongenomic E 2/ER$$ signaling pathways,drastically accumulated in nuclear speckles in the interphase nuclei of SOX2-driven CSC-like cell populations. Moreover,SOX2-positive CSC-like cells accumulated significantly higher numbers of actively dividing cells,and the highest levels of phospho-Ser118-ER$$ occurred when chromosomes lined up on a metaphase plate. The previously unrecognized link between E 2/ER$$ signaling and SOX2-driven stem cell circuitry may significantly impact our current understanding of breast cancer initiation and progression,i.e.,SOX2 can promote non-genomic E 2 signaling that leads to nuclear phospho-Ser118-ER$$,which ultimately exacerbates genomic ER signaling in response to E 2. Because E 2 stimulation has been recently shown to enhance breast tumor-initiating cell survival by downregulating miR-140,which targets SOX2,the establishment of a bidirectional cross-talk interaction between the stem cell self-renewal regulator,SOX2,and the local and systemic ability of E 2 to increase breast CSC activity may have profound implications for the development of new CSC-directed strategies for breast cancer prevention and therapy.
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
文献
Maldonado M et al. (AUG 2016)
Stem cell research 17 2 222--227
ROCK inhibitor primes human induced pluripotent stem cells to selectively differentiate towards mesendodermal lineage via epithelial-mesenchymal transition-like modulation.
Robust control of human induced pluripotent stem cell (hIPSC) differentiation is essential to realize its patient-tailored therapeutic potential. Here,we demonstrate a novel application of Y-27632,a small molecule Rho-associated protein kinase (ROCK) inhibitor,to significantly influence the differentiation of hIPSCs in a lineage-specific manner. The application of Y-27632 to hIPSCs resulted in a decrease in actin bundling and disruption of colony formation in a concentration and time-dependent manner. Such changes in cell and colony morphology were associated with decreased expression of E-cadherin,a cell-cell junctional protein,proportional to the increased exposure to Y-27632. Interestingly,gene and protein expression of pluripotency markers such as NANOG and OCT4 were not downregulated by an exposure to Y-27632 up to 36h. Simultaneously,epithelial-to-mesenchymal (EMT) transition markers were upregulated with an exposure to Y-27632. These EMT-like changes in the cells with longer exposure to Y-27632 resulted in a significant increase in the subsequent differentiation efficiency towards mesendodermal lineage. In contrast,an inhibitory effect was observed when cells were subjected to ectodermal differentiation after prolonged exposure to Y-27632. Collectively,these results present a novel method for priming hIPSCs to modulate their differentiation potential with a simple application of Y-27632.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
文献
Kansy BA et al. (NOV 2017)
Cancer research 77 22 6353--6364
PD-1 Status in CD8+ T Cells Associates with Survival and Anti-PD-1 Therapeutic Outcomes in Head and Neck Cancer.
Improved understanding of expression of immune checkpoint receptors (ICR) on tumor-infiltrating lymphocytes (TIL) may facilitate more effective immunotherapy in head and neck cancer (HNC) patients. A higher frequency of PD-1+ TIL has been reported in human papillomavirus (HPV)+ HNC patients,despite the role of PD-1 in T-cell exhaustion. This discordance led us to hypothesize that the extent of PD-1 expression more accurately defines T-cell function and prognostic impact,because PD-1high T cells may be more exhausted than PD-1low T cells and may influence clinical outcome and response to anti-PD-1 immunotherapy. In this study,PD-1 expression was indeed upregulated on HNC patient TIL,and the frequency of these PD-1+ TIL was higher in HPV+ patients (P = 0.006),who nonetheless experienced significantly better clinical outcome. However,PD-1high CD8+ TILs were more frequent in HPV- patients and represented a more dysfunctional subset with compromised IFN-γ secretion. Moreover,HNC patients with higher frequencies of PD-1high CD8+ TIL showed significantly worse disease-free survival and higher hazard ratio for recurrence (P < 0.001),while higher fractions of PD-1low T cells associated with HPV positivity and better outcome. In a murine HPV+ HNC model,anti-PD-1 mAb therapy differentially modulated PD-1high/low populations,and tumor rejection associated with loss of dysfunctional PD-1high CD8+ T cells and a significant increase in PD-1low TIL. Thus,the extent of PD-1 expression on CD8+ TIL provides a potential biomarker for anti-PD-1-based immunotherapy. Cancer Res; 77(22); 6353-64. textcopyright2017 AACR.
View Publication
产品类型:
产品号#:
19051
19051RF
产品名:
EasySep™人T细胞富集试剂盒
RoboSep™ 人T细胞富集试剂盒含滤芯吸头
文献
R. Yamin et al. (feb 2019)
Scientific reports 9 1 1351
High percentages and activity of synovial fluid NK cells present in patients with advanced stage active Rheumatoid Arthritis.
Rheumatoid Arthritis (RA) causes chronic inflammation of joints. The cytokines TNFalpha and IFNgamma are central players in RA,however their source has not been fully elucidated. Natural Killer (NK) cells are best known for their role in elimination of viral-infected and transformed cells,and they secrete pro-inflammatory cytokines. NK cells are present in the synovial fluids (SFs) of RA patients and are considered to be important in bone destruction. However,the phenotype and function of NK cells in the SFs of patients with erosive deformative RA (DRA) versus non-deformative RA (NDRA) is poorly characterized. Here we characterize the NK cell populations present in the blood and SFs of DRA and NDRA patients. We demonstrate that a distinct population of activated synovial fluid NK (sfNK) cells constitutes a large proportion of immune cells found in the SFs of DRA patients. We discovered that although sfNK cells in both DRA and NDRA patients have similar phenotypes,they function differently. The DRA sfNK secrete more TNFalpha and IFNgamma upon exposure to IL-2 and IL-15. Consequently,we suggest that sfNK cells may be a marker for more severely destructive RA disease.
View Publication
CD47xCD19 bispecific antibody triggers recruitment and activation of innate immune effector cells in a B-cell lymphoma xenograft model.
BACKGROUND CD47/SIRP$\alpha$ axis is recognized as an innate immune checkpoint and emerging clinical data validate the interest of interrupting this pathway in cancer,particularly in hematological malignancies. In preclinical models,CD47/SIRP$\alpha$ blocking agents have been shown to mobilize phagocytic cells and trigger adaptive immune responses to eliminate tumors. Here,we describe the mechanisms afforded by a CD47xCD19 bispecific antibody (NI-1701) at controlling tumor growth in a mouse xenograft B-cell lymphoma model. METHODS The contribution of immune effector cell subsets behind the antitumor activity of NI-1701 was investigated using flow cytometry,transcriptomic analysis,and in vivo immune-cell depletion experiments. RESULTS We showed that NI-1701 treatment transformed the tumor microenvironment (TME) into a more anti-tumorigenic state with increased NK cells,monocytes,dendritic cells (DC) and MHCIIhi tumor-associated macrophages (TAMs) and decreased granulocytic myeloid-derived suppressor cells. Notably,molecular analysis of isolated tumor-infiltrating leukocytes following NI-1701 administration revealed an upregulation of genes linked to immune activation,including IFN$\gamma$ and IL-12b. Moreover,TAM-mediated phagocytosis of lymphoma tumor cells was enhanced in the TME in the presence of NI-1701,highlighting the role of macrophages in tumor control. In vivo cell depletion experiments demonstrated that both macrophages and NK cells contribute to the antitumor activity. In addition,NI-1701 enhanced dendritic cell-mediated phagocytosis of tumor cells in vitro,resulting in an increased cross-priming of tumor-specific CD8 T cells. CONCLUSIONS The study described the mechanisms afforded by the CD47xCD19 bispecific antibody,NI-1701,at controlling tumor growth in lymphoma mouse model. NI-1701 is currently being evaluated in a Phase I clinical trial for the treatment of refractory or relapsed B-cell lymphoma (NCT04806035).
View Publication
产品类型:
产品号#:
19853
产品名:
EasySep™小鼠CD8+ T细胞分选试剂盒
文献
M. Thelen et al. (dec 2022)
Journal for immunotherapy of cancer 10 12
Immune responses against shared antigens are common in esophago-gastric cancer and can be enhanced using CD40-activated B cells.
BACKGROUND Specific immune response is a hallmark of cancer immunotherapy and shared tumor-associated antigens (TAAs) are important targets. Recent advances using combined cellular therapy against multiple TAAs renewed the interest in this class of antigens. Our study aims to determine the role of TAAs in esophago-gastric adenocarcinoma (EGA). METHODS RNA expression was assessed by NanoString in tumor samples of 41 treatment-na{\{i}}ve EGA patients. Endogenous T cell and antibody responses against the 10 most relevant TAAs were determined by FluoroSpot and protein-bound bead assays. Digital image analysis was used to evaluate the correlation of TAAs and T-cell abundance. T-cell receptor sequencing in vitro expansion with autologous CD40-activated B cells (CD40Bs) and in vitro cytotoxicity assays were applied to determine specific expansion clonality and cytotoxic activity of expanded T cells. RESULTS 68.3% of patients expressed ??5 TAAs simultaneously with coregulated clusters which were similar to data from The Cancer Genome Atlas (n=505). Endogenous cellular or humoral responses against ??1??TAA were detectable in 75.0% and 53.7% of patients respectively. We found a correlation of T-cell abundance and the expression of TAAs and genes related to antigen presentation. TAA-specific T-cell responses were polyclonal could be induced or enhanced using autologous CD40Bs and were cytotoxic in vitro. Despite the frequent expression of TAAs co-occurrence with immune responses was rare. CONCLUSIONS We identified the most relevant TAAs in EGA for monitoring of clinical trials and as therapeutic targets. Antigen-escape rather than missing immune response should be considered as mechanism underlying immunotherapy resistance of EGA."
View Publication
产品类型:
产品号#:
17851
产品名:
EasySep™人CD3正选试剂盒II
文献
Weiss L et al. (NOV 2004)
Blood 104 10 3249--56
Human immunodeficiency virus-driven expansion of CD4+CD25+ regulatory T cells, which suppress HIV-specific CD4 T-cell responses in HIV-infected patients.
The present study demonstrates that CD4(+)CD25(+) T cells,expanded in peripheral blood of HIV-infected patients receiving highly active antiretroviral therapy (HAART),exhibit phenotypic,molecular,and functional characteristics of regulatory T cells. The majority of peripheral CD4(+)CD25(+) T cells from HIV-infected patients expressed a memory phenotype. They were found to constitutively express transcription factor forkhead box P3 (Foxp3) messengers. CD4(+)CD25(+) T cells weakly proliferated to immobilized anti-CD3 monoclonal antibody (mAb) and addition of soluble anti-CD28 mAb significantly increased proliferation. In contrast to CD4(+)CD25(-) T cells,CD4(+)CD25(+) T cells from HIV-infected patients did not proliferate in response to recall antigens and to p24 protein. The proliferative capacity of CD4 T cells to tuberculin,cytomegalovirus (CMV),and p24 significantly increased following depletion of CD4(+)CD25(+) T cells. Furthermore,addition of increasing numbers of CD4(+)CD25(+) T cells resulted in a dose-dependent inhibition of CD4(+)CD25(-) T-cell proliferation to tuberculin and p24. CD4(+)CD25(+) T cells responded specifically to p24 antigen stimulation by expressing transforming growth factor beta (TGF-beta) and interleukin 10 (IL-10),thus indicating the presence of p24-specific CD4(+) T cells among the CD4(+)CD25(+) T-cell subset. Suppressive activity was not dependent on the secretion of TGF-beta or IL-10. Taken together,our results suggest that persistence of HIV antigens might trigger the expansion of CD4(+)CD25(+) regulatory T cells,which might induce a tolerance to HIV in vivo.
View Publication