Fiorenzano A et al. (SEP 2016)
Nature communications 7 12589
Cripto is essential to capture mouse epiblast stem cell and human embryonic stem cell pluripotency.
Known molecular determinants of developmental plasticity are mainly transcription factors,while the extrinsic regulation of this process has been largely unexplored. Here we identify Cripto as one of the earliest epiblast markers and a key extracellular determinant of the naive and primed pluripotent states. We demonstrate that Cripto sustains mouse embryonic stem cell (ESC) self-renewal by modulating Wnt/β-catenin,whereas it maintains mouse epiblast stem cell (EpiSC) and human ESC pluripotency through Nodal/Smad2. Moreover,we provide unprecedented evidence that Cripto controls the metabolic reprogramming in ESCs to EpiSC transition. Remarkably,Cripto deficiency attenuates ESC lineage restriction in vitro and in vivo,and permits ESC transdifferentiation into trophectoderm lineage,suggesting that Cripto has earlier functions than previously recognized. All together,our studies provide novel insights into the current model of mammalian pluripotency and contribute to the understanding of the extrinsic regulation of the first cell lineage decision in the embryo.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Larsen ZH et al. (NOV 2016)
Alcoholism,clinical and experimental research 40 11 2339--2350
Effects of Ethanol on Cellular Composition and Network Excitability of Human Pluripotent Stem Cell-Derived Neurons.
BACKGROUND Prenatal alcohol exposure (PAE) in animal models results in excitatory-inhibitory (E/I) imbalance in neocortex due to alterations in the GABAergic interneuron (IN) differentiation and migration. Thus,E/I imbalance is a potential cause for intellectual disability in individuals with fetal alcohol spectrum disorder (FASD),but whether ethanol (EtOH) changes glutamatergic and GABAergic IN specification during human development remains unknown. Here,we created a human cellular model of PAE/FASD and tested the hypothesis that EtOH exposure during differentiation of human pluripotent stem cell-derived neurons (hPSNs) would cause the aberrant production of glutamatergic and GABAergic neurons,resulting in E/I imbalance. METHODS We applied 50 mM EtOH daily to differentiating hPSNs for 50 days to model chronic first-trimester exposure. We used quantitative polymerase chain reaction,immunocytochemical,and electrophysiological analysis to examine the effects of EtOH on hPSN specification and functional E/I balance. RESULTS We found that EtOH did not alter neural induction nor general forebrain patterning and had no effect on the expression of markers of excitatory cortical pyramidal neurons. In contrast,our data revealed highly significant changes to levels of transcripts involved with IN precursor development (e.g.,GSX2,DLX1/2/5/6,NR2F2) as well as mature IN specification (e.g.,SST,NPY). Interestingly,EtOH did not affect the number of GABAergic neurons generated nor the frequency or amplitude of miniature excitatory and inhibitory postsynaptic currents. CONCLUSIONS Similar to in vivo rodent studies,EtOH significantly and specifically altered the expression of genes involved with IN specification from hPSNs,but did not cause imbalances of synaptic excitation-inhibition. Thus,our findings corroborate previous studies pointing to aberrant neuronal differentiation as an underlying mechanism of intellectual disability in FASD. However,in contrast to rodent binge models,our chronic exposure model suggests possible compensatory mechanisms that may cause more subtle defects of network processing rather than gross alterations in total E/I balance.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Rodrigues DC et al. (OCT 2016)
Cell reports 17 3 720--734
MECP2 Is Post-transcriptionally Regulated during Human Neurodevelopment by Combinatorial Action of RNA-Binding Proteins and miRNAs.
A progressive increase in MECP2 protein levels is a crucial and precisely regulated event during neurodevelopment,but the underlying mechanism is unclear. We report that MECP2 is regulated post-transcriptionally during in vitro differentiation of human embryonic stem cells (hESCs) into cortical neurons. Using reporters to identify functional RNA sequences in the MECP2 3' UTR and genetic manipulations to explore the role of interacting factors on endogenous MECP2,we discover combinatorial mechanisms that regulate RNA stability and translation. The RNA-binding protein PUM1 and pluripotent-specific microRNAs destabilize the long MECP2 3' UTR in hESCs. Hence,the 3' UTR appears to lengthen during differentiation as the long isoform becomes stable in neurons. Meanwhile,translation of MECP2 is repressed by TIA1 in hESCs until HuC predominates in neurons,resulting in a switch to translational enhancement. Ultimately,3' UTR-directed translational fine-tuning differentially modulates MECP2 protein in the two cell types to levels appropriate for normal neurodevelopment.
View Publication
Micropatterning Facilitates the Long-Term Growth and Analysis of iPSC-Derived Individual Human Neurons and Neuronal Networks
The discovery of induced pluripotent stem cells (iPSCs) and their application to patient-specific disease models offers new opportunities for studying the pathophysiology of neurological disorders. However,current methods for culturing iPSC-derived neuronal cells result in clustering of neurons,which precludes the analysis of individual neurons and defined neuronal networks. To address this challenge,cultures of human neurons on micropatterned surfaces are developed that promote neuronal survival over extended periods of time. This approach facilitates studies of neuronal development,cellular trafficking,and related mechanisms that require assessment of individual neurons and specific network connections. Importantly,micropatterns support the long-term stability of cultured neurons,which enables time-dependent analysis of cellular processes in living neurons. The approach described in this paper allows mechanistic studies of human neurons,both in terms of normal neuronal development and function,as well as time-dependent pathological processes,and provides a platform for testing of new therapeutics in neuropsychiatric disorders.
View Publication
产品类型:
产品号#:
05711
产品名:
NeuroCult™ SM1 神经添加物
文献
Merling RK et al. (APR 2013)
Blood 121 14 e98--107
Transgene-free iPSCs generated from small volume peripheral blood nonmobilized CD34+ cells.
Demonstrates efficient reprogramming of iPS cells from CD34+ stem cells enriched from a small volume of peripheral blood.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Ni C et al. (AUG 2013)
Cancer letters 336 1 174--84
IFN-γ selectively exerts pro-apoptotic effects on tumor-initiating label-retaining colon cancer cells.
Label-retaining cancer cells (LRCCs) represent a novel population of stem-like cancer cells exhibiting slow cycling,chemoresistance and tumor-initiating capacities; however,their properties remain unclear,and approaches to eradicate LRCCs remain elusive. Here,we report that colon cancer cells with high fluorescent intensity,referred to as LRCCs,have the greatest cancer stem cell (CSC)-like capacities and that they preferentially express CSC markers and stemness-related genes. Moreover,we found that Lgr5,which has been reported to be a marker of rapid cycling CSCs,is almost negatively expressed in LRCCs but that its expression is gradually increased in the differentiation process of LRCCs. Interestingly,we found that LRCCs are especially sensitive to the pro-apoptotic effect of IFN-γ treatment both in vitro and in vivo because LRCCs possess higher IFN-γR levels compared with non-LRCCs,which results in the upregulation of the apoptosis pathway after IFN-γ treatment. Furthermore,we found that IFN-γ shows synergistic effects with the conventional anticancer drug Oxaliplatin to eliminate both LRCCs and non-LRCCs. In conclusion,this is the first study to suggest that LRCCs,as a distinct tumor-initiating population,can be selectively eradicated by IFN-γ,which may provide a novel therapeutic strategy for colon cancer treatment.
View Publication
Molecular beacon-enabled purification of living cells by targeting cell type-specific mRNAs.
Molecular beacons (MBs) are dual-labeled oligonucleotides that fluoresce only in the presence of complementary mRNA. The use of MBs to target specific mRNAs allows sorting of specific cells from a mixed cell population. In contrast to existing approaches that are limited by available surface markers or selectable metabolic characteristics,the MB-based method enables the isolation of a wide variety of cells. For example,the ability to purify specific cell types derived from pluripotent stem cells (PSCs) is important for basic research and therapeutics. In addition to providing a general protocol for MB design,validation and nucleofection into cells,we describe how to isolate a specific cell population from differentiating PSCs. By using this protocol,we have successfully isolated cardiomyocytes differentiated from mouse or human PSCs (hPSCs) with ∼ 97% purity,as confirmed by electrophysiology and immunocytochemistry. After designing MBs,their ordering and validation requires 2 weeks,and the isolation process requires 3 h.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Paik KJ et al. (MAR 2014)
Plastic and reconstructive surgery 133 3 Suppl 174
Abstract 158: Identification of BMP-Responsive Long Noncoding RNAs in Pluripotent Cells.
Nayak RC et al. (AUG 2015)
The Journal of clinical investigation 125 8 3103--3116
Pathogenesis of ELANE-mutant severe neutropenia revealed by induced pluripotent stem cells.
Severe congenital neutropenia (SCN) is often associated with inherited heterozygous point mutations in ELANE,which encodes neutrophil elastase (NE). However,a lack of appropriate models to recapitulate SCN has substantially hampered the understanding of the genetic etiology and pathobiology of this disease. To this end,we generated both normal and SCN patient-derived induced pluripotent stem cells (iPSCs),and performed genome editing and differentiation protocols that recapitulate the major features of granulopoiesis. Pathogenesis of ELANE point mutations was the result of promyelocyte death and differentiation arrest,and was associated with NE mislocalization and activation of the unfolded protein response/ER stress (UPR/ER stress). Similarly,high-dose G-CSF (or downstream signaling through AKT/BCL2) rescues the dysgranulopoietic defect in SCN patient-derived iPSCs through C/EBP$$-dependent emergency granulopoiesis. In contrast,sivelestat,an NE-specific small-molecule inhibitor,corrected dysgranulopoiesis by restoring normal intracellular NE localization in primary granules; ameliorating UPR/ER stress; increasing expression of CEBPA,but not CEBPB; and promoting promyelocyte survival and differentiation. Together,these data suggest that SCN disease pathogenesis includes NE mislocalization,which in turn triggers dysfunctional survival signaling and UPR/ER stress. This paradigm has the potential to be clinically exploited to achieve therapeutic responses using lower doses of G-CSF combined with targeting to correct NE mislocalization.
View Publication
产品类型:
产品号#:
04034
04044
85850
85857
产品名:
MethoCult™H4034 Optimum
MethoCult™H4034 Optimum
mTeSR™1
mTeSR™1
文献
Eguchi M et al. (JAN 2005)
Proceedings of the National Academy of Sciences of the United States of America 102 4 1133--8
Directing oncogenic fusion genes into stem cells via an SCL enhancer.
TEL-TRKC is a fusion gene generated by chromosomal translocation and encodes an activated tyrosine kinase. Uniquely,it is found in both solid tumors and leukemia. However,a single exon difference (in TEL) in TEL-TRKC fusions is associated with the two sets of cancer phenotypes. We expressed the two TEL-TRKC variants in vivo by using the 3' regulatory element of SCL that is selectively active in a subset of mesodermal cell lineages,including endothelial and hematopoietic stem cells and progenitors. The leukemia form of TEL-TRKC (-exon 5 of TEL) enhanced hematopoietic stem cell renewal and initiated leukemia. In contrast,the TEL-TRKC solid tumor variant (+ TEL exon 5) elicited an embryonic lethal phenotype with impairment of both angiogenesis and hematopoiesis indicative of an effect at the level of the hemangioblasts. The ability of TEL-TRKC to repress expression of Flk1,a critical regulator of early endothelial and hematopoietic cells,depended on TEL exon 5. These data indicate that related oncogenic fusion proteins similarly expressed in a hierarchy of early stem cells can have selective,cell type-specific developmental impacts.
View Publication
产品类型:
产品号#:
03231
产品名:
MethoCult™M3231
文献
Laird DJ et al. (DEC 2005)
Cell 123 7 1351--60
Stem cells are units of natural selection in a colonial ascidian.
Stem cells are highly conserved biological units of development and regeneration. Here we formally demonstrate that stem cell lineages are also legitimate units of natural selection. In a colonial ascidian,Botryllus schlosseri,vascular fusion between genetically distinct individuals results in cellular parasitism of somatic tissues,gametes,or both. We show that genetic hierarchies of somatic and gametic parasitism following fusion can be replicated by transplanting cells between colonies. We prospectively isolate a population of multipotent,self-renewing stem cells that retain their competitive phenotype upon transplantation. Their single-cell contribution to either somatic or germline fates,but not to both,is consistent with separate lineages of somatic and germline stem cells or pluripotent stem cells that differentiate according to the niche in which they land. Since fusion is restricted to individuals that share a fusion/histocompatibility allele,these data suggest that histocompatibility genes in Botryllus evolved to protect the body from parasitic stem cells usurping asexual or sexual inheritance.
View Publication
产品类型:
产品号#:
01700
01705
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™DEAB试剂
ALDEFLUOR™测定缓冲液
文献
Kordes C et al. ( 2008)
Biochemical and biophysical research communications 367 1 116--123
Canonical Wnt signaling maintains the quiescent stage of hepatic stellate cells.
It is well known that hepatic stellate cells (HSC) develop into cells,which are thought to contribute to liver fibrogenesis. Recent data suggest that HSC are progenitor cells with the capacity to differentiate into cells of endothelial and hepatocyte lineages. The present study shows that beta-catenin-dependent canonical Wnt signaling is active in freshly isolated HSC of rats. Mimicking of the canonical Wnt pathway in cultured HSC by TWS119,an inhibitor of the glycogen synthase kinase 3beta,led to reduced beta-catenin phosphorylation,induced nuclear translocation of beta-catenin,elevated glutamine synthetase production,impeded synthesis of alpha-smooth muscle actin and Wnt5a,but promoted the expression of glial fibrillary acidic protein,Wnt10b,and paired-like homeodomain transcription factor 2c. In addition,canonical Wnt signaling lowered DNA synthesis and hindered HSC from entering the cell cycle. The findings demonstrate that beta-catenin-dependent Wnt signaling maintains the quiescent state of HSC and,similar to stem and progenitor cells,influences their developmental fate.
View Publication